box_coder_op.cc 6.3 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
G
gaoyuan 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

B
baiyf 已提交
12
#include "paddle/fluid/operators/detection/box_coder_op.h"
G
gaoyuan 已提交
13 14 15 16 17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class BoxCoderOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("PriorBox"),
                   "Input(PriorBox) of BoxCoderOp should not be null.");
G
gaoyuan 已提交
25
    PADDLE_ENFORCE(ctx->HasInput("TargetBox"),
G
gaoyuan 已提交
26
                   "Input(TargetBox) of BoxCoderOp should not be null.");
G
gaoyuan 已提交
27 28
    PADDLE_ENFORCE(ctx->HasOutput("OutputBox"),
                   "Output(OutputBox) of BoxCoderOp should not be null.");
G
gaoyuan 已提交
29 30 31 32

    auto prior_box_dims = ctx->GetInputDim("PriorBox");
    auto target_box_dims = ctx->GetInputDim("TargetBox");

33 34 35 36 37 38 39 40 41
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(prior_box_dims.size(), 2,
                        "The rank of Input of PriorBoxVar must be 2");
      PADDLE_ENFORCE_EQ(prior_box_dims[1], 4,
                        "The shape of PriorBox is [N, 4]");
      if (ctx->HasInput("PriorBoxVar")) {
        auto prior_box_var_dims = ctx->GetInputDim("PriorBoxVar");
        PADDLE_ENFORCE_EQ(prior_box_dims, prior_box_var_dims);
      }
G
gaoyuan 已提交
42

43 44 45 46 47 48 49 50 51 52 53 54 55
      auto code_type =
          GetBoxCodeType(ctx->Attrs().Get<std::string>("code_type"));
      if (code_type == BoxCodeType::kEncodeCenterSize) {
        PADDLE_ENFORCE_EQ(target_box_dims.size(), 2,
                          "The rank of Input of TargetBox must be 2");
        PADDLE_ENFORCE_EQ(target_box_dims[1], 4,
                          "The shape of TargetBox is [M, 4]");
      } else if (code_type == BoxCodeType::kDecodeCenterSize) {
        PADDLE_ENFORCE_EQ(target_box_dims.size(), 3,
                          "The rank of Input of TargetBox must be 3");
        PADDLE_ENFORCE_EQ(target_box_dims[1], prior_box_dims[0]);
        PADDLE_ENFORCE_EQ(target_box_dims[2], prior_box_dims[1]);
      }
Y
Yuan Gao 已提交
56
    }
G
gaoyuan 已提交
57 58 59 60
    ctx->SetOutputDim(
        "OutputBox",
        framework::make_ddim({target_box_dims[0], prior_box_dims[0], 4}));
    ctx->ShareLoD("TargetBox", /*->*/ "OutputBox");
G
gaoyuan 已提交
61 62 63 64 65
  }
};

class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
66
  void Make() override {
G
gaoyuan 已提交
67 68 69
    AddInput(
        "PriorBox",
        "(Tensor, default Tensor<float>) "
G
gaoyuan 已提交
70
        "Box list PriorBox is a 2-D Tensor with shape [M, 4] holds M boxes, "
G
gaoyuan 已提交
71 72 73 74 75 76
        "each box is represented as [xmin, ymin, xmax, ymax], "
        "[xmin, ymin] is the left top coordinate of the anchor box, "
        "if the input is image feature map, they are close to the origin "
        "of the coordinate system. [xmax, ymax] is the right bottom "
        "coordinate of the anchor box.");
    AddInput("PriorBoxVar",
77
             "(Tensor, default Tensor<float>, optional) "
G
gaoyuan 已提交
78
             "PriorBoxVar is a 2-D Tensor with shape [M, 4] holds M group "
79 80 81
             "of variance. PriorBoxVar will set all elements to 1 by "
             "default.")
        .AsDispensable();
G
gaoyuan 已提交
82 83
    AddInput(
        "TargetBox",
Y
Yuan Gao 已提交
84 85 86 87 88 89 90 91 92 93
        "(LoDTensor or Tensor) This input can be a 2-D LoDTensor with shape "
        "[N, 4] when code_type is 'encode_center_size'. This input also can "
        "be a 3-D Tensor with shape [N, M, 4] when code_type is "
        "'decode_center_size'. [N, 4], each box is represented as "
        "[xmin, ymin, xmax, ymax], [xmin, ymin] is the left top coordinate "
        "of the box if the input is image feature map, they are close to "
        "the origin of the coordinate system. [xmax, ymax] is the right "
        "bottom coordinate of the box. This tensor can contain LoD "
        "information to represent a batch of inputs. One instance of this "
        "batch can contain different numbers of entities.");
G
gaoyuan 已提交
94 95 96 97 98
    AddAttr<std::string>("code_type",
                         "(string, default encode_center_size) "
                         "the code type used with the target box")
        .SetDefault("encode_center_size")
        .InEnum({"encode_center_size", "decode_center_size"});
99 100 101 102
    AddAttr<bool>("box_normalized",
                  "(bool, default true) "
                  "whether treat the priorbox as a noramlized box")
        .SetDefault(true);
Y
Yuan Gao 已提交
103 104 105 106 107 108 109
    AddOutput("OutputBox",
              "(LoDTensor or Tensor) "
              "When code_type is 'encode_center_size', the output tensor of "
              "box_coder_op with shape [N, M, 4] representing the result of N "
              "target boxes encoded with M Prior boxes and variances. When "
              "code_type is 'decode_center_size', N represents the batch size "
              "and M represents the number of deocded boxes.");
G
gaoyuan 已提交
110 111

    AddComment(R"DOC(
112 113 114

Bounding Box Coder.

G
gaoyuan 已提交
115
Encode/Decode the target bounding box with the priorbox information.
116

G
gaoyuan 已提交
117
The Encoding schema described below:
118 119 120 121 122 123 124 125 126

    ox = (tx - px) / pw / pxv

    oy = (ty - py) / ph / pyv

    ow = log(abs(tw / pw)) / pwv 

    oh = log(abs(th / ph)) / phv 

G
gaoyuan 已提交
127
The Decoding schema described below:
128 129 130 131 132 133 134 135 136 137 138 139 140 141

    ox = (pw * pxv * tx * + px) - tw / 2

    oy = (ph * pyv * ty * + py) - th / 2

    ow = exp(pwv * tw) * pw + tw / 2

    oh = exp(phv * th) * ph + th / 2

where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, width
and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote the
priorbox's (anchor) center coordinates, width and height. `pxv`, `pyv`, `pwv`,
`phv` denote the variance of the priorbox and `ox`, `oy`, `ow`, `oh` denote the
encoded/decoded coordinates, width and height.
G
gaoyuan 已提交
142 143 144 145 146 147 148 149
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
150 151
REGISTER_OPERATOR(box_coder, ops::BoxCoderOp, ops::BoxCoderOpMaker,
                  paddle::framework::EmptyGradOpMaker);
152 153 154
REGISTER_OP_CPU_KERNEL(
    box_coder, ops::BoxCoderKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BoxCoderKernel<paddle::platform::CPUDeviceContext, double>);