object_detector.h 3.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

W
wangguanzhong 已提交
17
#include <ctime>
18
#include <memory>
W
wangguanzhong 已提交
19
#include <string>
20
#include <utility>
W
wangguanzhong 已提交
21
#include <vector>
22 23 24

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
W
wangguanzhong 已提交
25
#include <opencv2/imgproc/imgproc.hpp>
26

W
wangguanzhong 已提交
27
#include "paddle_inference_api.h"  // NOLINT
28 29

#include "include/config_parser.h"
W
wangguanzhong 已提交
30
#include "include/preprocess_op.h"
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

namespace PaddleDetection {
// Object Detection Result
struct ObjectResult {
  // Rectangle coordinates of detected object: left, right, top, down
  std::vector<int> rect;
  // Class id of detected object
  int class_id;
  // Confidence of detected object
  float confidence;
};

// Generate visualization colormap for each class
std::vector<int> GenerateColorMap(int num_class);

// Visualiztion Detection Result
cv::Mat VisualizeResult(const cv::Mat& img,
W
wangguanzhong 已提交
48 49 50
                        const std::vector<ObjectResult>& results,
                        const std::vector<std::string>& lable_list,
                        const std::vector<int>& colormap);
51 52 53

class ObjectDetector {
 public:
W
wangguanzhong 已提交
54
  explicit ObjectDetector(const std::string& model_dir,
G
Guanghua Yu 已提交
55
                          const std::string& device,
W
wangguanzhong 已提交
56 57 58
                          const std::string& run_mode = "fluid",
                          const int gpu_id = 0,
                          bool trt_calib_mode = false) {
59 60 61
    config_.load_config(model_dir);
    threshold_ = config_.draw_threshold_;
    preprocessor_.Init(config_.preprocess_info_, config_.arch_);
W
wangguanzhong 已提交
62 63 64 65 66 67 68
    LoadModel(model_dir,
              device,
              config_.min_subgraph_size_,
              1,
              run_mode,
              gpu_id,
              trt_calib_mode);
69 70 71
  }

  // Load Paddle inference model
W
wangguanzhong 已提交
72 73 74 75 76 77 78
  void LoadModel(const std::string& model_dir,
                 const std::string& device,
                 const int min_subgraph_size,
                 const int batch_size = 1,
                 const std::string& run_mode = "fluid",
                 const int gpu_id = 0,
                 bool trt_calib_mode = false);
79 80

  // Run predictor
81
  void Predict(const cv::Mat& im,
W
wangguanzhong 已提交
82 83 84 85 86
               const double threshold = 0.5,
               const int warmup = 0,
               const int repeats = 1,
               const bool run_benchmark = false,
               std::vector<ObjectResult>* result = nullptr);
87 88 89 90 91 92 93 94 95 96

  // Get Model Label list
  const std::vector<std::string>& GetLabelList() const {
    return config_.label_list_;
  }

 private:
  // Preprocess image and copy data to input buffer
  void Preprocess(const cv::Mat& image_mat);
  // Postprocess result
W
wangguanzhong 已提交
97
  void Postprocess(const cv::Mat& raw_mat, std::vector<ObjectResult>* result);
98 99 100 101 102 103 104 105 106 107

  std::unique_ptr<paddle::PaddlePredictor> predictor_;
  Preprocessor preprocessor_;
  ImageBlob inputs_;
  std::vector<float> output_data_;
  float threshold_;
  ConfigPaser config_;
};

}  // namespace PaddleDetection