ssdlite_mobilenet_v1.yml 3.5 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
architecture: SSD
use_gpu: true
max_iters: 400000
snapshot_iter: 20000
log_iter: 20
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_ssld_pretrained.tar
save_dir: output
weights: output/ssdlite_mobilenet_v1/model_final
num_classes: 81

SSD:
  backbone: MobileNet
  multi_box_head: SSDLiteMultiBoxHead
  output_decoder:
    background_label: 0
    keep_top_k: 200
    nms_eta: 1.0
    nms_threshold: 0.45
    nms_top_k: 400
    score_threshold: 0.01

MobileNet:
24
  conv_decay: 0.00004
G
Guanghua Yu 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  conv_group_scale: 1
  extra_block_filters: [[256, 512], [128, 256], [128, 256], [64, 128]]
  with_extra_blocks: true

SSDLiteMultiBoxHead:
  aspect_ratios: [[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2., 3.]]
  base_size: 300
  steps: [16, 32, 64, 100, 150, 300]
  flip: true
  clip: true
  max_ratio: 95
  min_ratio: 20
  offset: 0.5
  conv_decay: 0.00004

LearningRate:
  base_lr: 0.4
  schedulers:
  - !CosineDecay
    max_iters: 400000
  - !LinearWarmup
    start_factor: 0.33333
    steps: 2000

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0005
    type: L2

TrainReader:
  inputs_def:
    image_shape: [3, 300, 300]
    fields: ['image', 'gt_bbox', 'gt_class']
  dataset:
    !COCODataSet
    dataset_dir: dataset/coco
    anno_path: annotations/instances_train2017.json
    image_dir: train2017
  sample_transforms:
  - !DecodeImage
    to_rgb: true
  - !RandomDistort
    brightness_lower: 0.875
    brightness_upper: 1.125
    is_order: true
  - !RandomExpand
    fill_value: [123.675, 116.28, 103.53]
  - !RandomCrop
    allow_no_crop: false
  - !NormalizeBox {}
  - !ResizeImage
    interp: 1
    target_size: 300
    use_cv2: false
  - !RandomFlipImage
    is_normalized: false
  - !NormalizeImage
    mean: [0.485, 0.456, 0.406]
    std: [0.229, 0.224, 0.225]
    is_scale: true
    is_channel_first: false
  - !Permute
    to_bgr: false
    channel_first: true
  batch_size: 64
  shuffle: true
  drop_last: true
  # Number of working threads/processes. To speed up, can be set to 16 or 32 etc.
  worker_num: 8
  # Size of shared memory used in result queue. After increasing `worker_num`, need expand `memsize`.
  memsize: 8G
  # Buffer size for multi threads/processes.one instance in buffer is one batch data.
  # To speed up, can be set to 64 or 128 etc.
  bufsize: 32
  use_process: true


EvalReader:
  inputs_def:
    image_shape: [3, 300, 300]
    fields: ['image', 'gt_bbox', 'gt_class', 'im_shape', 'im_id']
  dataset:
    !COCODataSet
    dataset_dir: dataset/coco
    anno_path: annotations/instances_val2017.json
    image_dir: val2017
  sample_transforms:
  - !DecodeImage
    to_rgb: true
  - !NormalizeBox {}
  - !ResizeImage
    interp: 1
    target_size: 300
    use_cv2: false
  - !NormalizeImage
    mean: [0.485, 0.456, 0.406]
    std: [0.229, 0.224, 0.225]
    is_scale: true
    is_channel_first: false
  - !Permute
    to_bgr: false
    channel_first: True
  batch_size: 8
  worker_num: 8
  bufsize: 32
  use_process: false

TestReader:
  inputs_def:
    image_shape: [3,300,300]
    fields: ['image', 'im_id', 'im_shape']
  dataset:
    !ImageFolder
    anno_path: annotations/instances_val2017.json
  sample_transforms:
  - !DecodeImage
    to_rgb: true
  - !ResizeImage
    interp: 1
    max_size: 0
    target_size: 300
149
    use_cv2: true
G
Guanghua Yu 已提交
150 151 152 153 154 155 156 157 158
  - !NormalizeImage
    mean: [0.485, 0.456, 0.406]
    std: [0.229, 0.224, 0.225]
    is_scale: true
    is_channel_first: false
  - !Permute
    to_bgr: false
    channel_first: True
  batch_size: 1