cascade_rcnn_mobilenetv3_fpn_320.yml 4.4 KB
Newer Older
1 2 3 4
architecture: CascadeRCNN
max_iters: 500000
snapshot_iter: 50000
use_gpu: true
5
log_iter: 20
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar
weights: output/cascade_rcnn_mobilenetv3_fpn_320/model_final
metric: COCO
num_classes: 81

CascadeRCNN:
  backbone: MobileNetV3RCNN
  fpn: FPN
  rpn_head: FPNRPNHead
  roi_extractor: FPNRoIAlign
  bbox_head: CascadeBBoxHead
  bbox_assigner: CascadeBBoxAssigner

MobileNetV3RCNN:
  norm_type: bn
  freeze_norm: true
  norm_decay: 0.0
  feature_maps: [2, 3, 4]
  conv_decay: 0.00001
  lr_mult_list: [0.25, 0.25, 0.5, 0.5, 0.75]
  scale: 1.0
  model_name: large

FPN:
  min_level: 2
  max_level: 6
  num_chan: 48
  has_extra_convs: true
  spatial_scale: [0.0625, 0.125, 0.25]

FPNRPNHead:
  anchor_generator:
    anchor_sizes: [32, 64, 128, 256, 512]
    aspect_ratios: [0.5, 1.0, 2.0]
    stride: [16.0, 16.0]
    variance: [1.0, 1.0, 1.0, 1.0]
  anchor_start_size: 16
  min_level: 2
  max_level: 6
  num_chan: 48
  rpn_target_assign:
    rpn_batch_size_per_im: 256
    rpn_fg_fraction: 0.5
    rpn_positive_overlap: 0.7
    rpn_negative_overlap: 0.3
    rpn_straddle_thresh: 0.0
  train_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    pre_nms_top_n: 2000
    post_nms_top_n: 2000
  test_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    pre_nms_top_n: 300
    post_nms_top_n: 100

FPNRoIAlign:
  canconical_level: 3
  canonical_size: 112
  min_level: 2
  max_level: 4
  box_resolution: 7
  sampling_ratio: 2

CascadeBBoxAssigner:
  batch_size_per_im: 512
  bbox_reg_weights: [10, 20, 30]
  bg_thresh_lo: [0.0, 0.0, 0.0]
  bg_thresh_hi: [0.5, 0.6, 0.7]
  fg_thresh: [0.5, 0.6, 0.7]
  fg_fraction: 0.25

CascadeBBoxHead:
  head: CascadeTwoFCHead
  bbox_loss: BalancedL1Loss
  nms:
    keep_top_k: 100
    nms_threshold: 0.5
    score_threshold: 0.05

BalancedL1Loss:
  alpha: 0.5
  gamma: 1.5
  beta: 1.0
  loss_weight: 1.0

CascadeTwoFCHead:
  mlp_dim: 128

LearningRate:
  base_lr: 0.02
  schedulers:
  - !CosineDecay
    max_iters: 500000
  - !LinearWarmup
    start_factor: 0.1
    steps: 500

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.00004
    type: L2

TrainReader:
  inputs_def:
    fields: ['image', 'im_info', 'im_id', 'gt_bbox', 'gt_class', 'is_crowd']
  dataset:
    !COCODataSet
    image_dir: train2017
    anno_path: annotations/instances_train2017.json
    dataset_dir: dataset/coco
  sample_transforms:
  - !DecodeImage
    to_rgb: true
  - !RandomFlipImage
    prob: 0.5
  - !AutoAugmentImage
    autoaug_type: v1
  - !NormalizeImage
    is_channel_first: false
    is_scale: true
    mean: [0.485,0.456,0.406]
    std: [0.229, 0.224,0.225]
  - !ResizeImage
    target_size: [224, 256, 288, 320, 352, 384]
    max_size: 512
    interp: 1
    use_cv2: true
  - !Permute
    to_bgr: false
    channel_first: true
  batch_transforms:
  - !PadBatch
    pad_to_stride: 32
    use_padded_im_info: false
  batch_size: 2
  shuffle: true
  worker_num: 2
  use_process: false


TestReader:
  inputs_def:
    # set image_shape if needed
    fields: ['image', 'im_info', 'im_id', 'im_shape']
  dataset:
    !ImageFolder
    anno_path: annotations/instances_val2017.json
  sample_transforms:
  - !DecodeImage
    to_rgb: true
    with_mixup: false
  - !NormalizeImage
    is_channel_first: false
    is_scale: true
    mean: [0.485,0.456,0.406]
    std: [0.229, 0.224,0.225]
  - !ResizeImage
    interp: 1
    max_size: 320
    target_size: 320
    use_cv2: true
  - !Permute
    channel_first: true
    to_bgr: false
  batch_transforms:
  - !PadBatch
    pad_to_stride: 32
    use_padded_im_info: true
  batch_size: 1
  shuffle: false



EvalReader:
  inputs_def:
    fields: ['image', 'im_info', 'im_id', 'im_shape']
    # for voc
    #fields: ['image', 'im_info', 'im_id', 'gt_bbox', 'gt_class', 'is_difficult']
  dataset:
    !COCODataSet
    image_dir: val2017
    anno_path: annotations/instances_val2017.json
    dataset_dir: dataset/coco
  sample_transforms:
  - !DecodeImage
    to_rgb: true
    with_mixup: false
  - !NormalizeImage
    is_channel_first: false
    is_scale: true
    mean: [0.485,0.456,0.406]
    std: [0.229, 0.224,0.225]
  - !ResizeImage
    interp: 1
    max_size: 320
    target_size: 320
    use_cv2: true
  - !Permute
    channel_first: true
    to_bgr: false
  batch_transforms:
  - !PadBatch
    pad_to_stride: 32
    use_padded_im_info: true
  batch_size: 1
  shuffle: false
  drop_empty: false
  worker_num: 2