test_elementwise_gradient_op.py 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
import unittest
import numpy as np

import paddle.fluid.core as core
import paddle.fluid as fluid


class TestElementWiseAddOp(unittest.TestCase):
    def __assert_close(self, tensor, np_array, msg, atol=1e-4):
        self.assertTrue(np.allclose(np.array(tensor), np_array, atol=atol), msg)

    def check_forward_backward(self):
        def test_with_place(place):
            out_grad = np.random.random_sample(self.x.shape).astype(np.float32)
            x_grad = out_grad
31
            sum_axis = list(range(0, len(self.x.shape)))
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
            del sum_axis[self.axis]
            y_grad = np.sum(out_grad, axis=tuple(sum_axis))

            var_dict = locals()
            var_dict['y'] = self.y
            var_dict['x'] = self.x
            var_dict['out'] = self.out
            var_dict['y@GRAD'] = y_grad
            var_dict['x@GRAD'] = x_grad
            var_dict['out@GRAD'] = out_grad

            var_names = ['x', 'y', 'out', 'y@GRAD', 'x@GRAD', 'out@GRAD']
            ground_truth = {name: var_dict[name] for name in var_names}

            program = fluid.Program()
            with fluid.program_guard(program):
                block = program.global_block()
                for name in ground_truth:
                    block.create_var(
                        name=name,
                        dtype='float32',
                        shape=ground_truth[name].shape)
                elementwise_add_op = block.append_op(
                    type="elementwise_add",
                    inputs={
                        "X": block.var('x'),
                        "Y": block.var('y'),
                    },
60 61
                    outputs={"Out": block.var('out'), },
                    attrs={"axis": self.axis, })
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

                # generate backward op_desc
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    elementwise_add_op.desc, set(), [])
                grad_op_desc = grad_op_desc_list[0]
                new_op_desc = block.desc.append_op()
                new_op_desc.copy_from(grad_op_desc)
                for var_name in grad_op_desc.output_arg_names():
                    block.desc.var(var_name.encode("ascii"))
                grad_op_desc.infer_var_type(block.desc)
                grad_op_desc.infer_shape(block.desc)
                for arg in grad_op_desc.output_arg_names():
                    grad_var = block.desc.find_var(arg.encode("ascii"))
                    grad_var.set_dtype(core.VarDesc.VarType.FP32)

                exe = fluid.Executor(place)
                out = exe.run(program,
                              feed={
                                  name: var_dict[name]
                                  for name in ['x', 'y', 'out@GRAD']
                              },
                              fetch_list=['x@GRAD', 'y@GRAD'])
                self.__assert_close(x_grad, out[0], "x@GRAD")
85
                self.__assert_close(y_grad, out[1], "y@GRAD", atol=1.4)
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda() and core.op_support_gpu(
                "elementwise_add"):
            places.append(core.CUDAPlace(0))

        for place in places:
            test_with_place(place)

    def test_check_forward_backward_with_scale_and_bias(self):
        np.random.seed(123)
        self.x = np.random.random((4, 32, 220, 220)).astype(np.float32)
        self.y = np.random.random((32)).astype(np.float32)
        self.out = self.x + self.y.reshape(1, 32, 1, 1)
        self.axis = 1
        self.check_forward_backward()


if __name__ == '__main__':
    unittest.main()