test_rnn_encoder_decoder.py 10.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import numpy as np
18
import paddle
19 20 21 22
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
import paddle.fluid.layers as layers
23
import contextlib
24 25
import math
import sys
26
import unittest
27
from paddle.fluid.executor import Executor
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
hidden_dim = 32
embedding_dim = 16
batch_size = 10
max_length = 50
topk_size = 50
encoder_size = decoder_size = hidden_dim
IS_SPARSE = True
USE_PEEPHOLES = False


def bi_lstm_encoder(input_seq, hidden_size):
    input_forward_proj = fluid.layers.fc(input=input_seq,
                                         size=hidden_size * 4,
                                         bias_attr=True)
    forward, _ = fluid.layers.dynamic_lstm(
        input=input_forward_proj,
        size=hidden_size * 4,
        use_peepholes=USE_PEEPHOLES)
    input_backward_proj = fluid.layers.fc(input=input_seq,
                                          size=hidden_size * 4,
                                          bias_attr=True)
    backward, _ = fluid.layers.dynamic_lstm(
        input=input_backward_proj,
        size=hidden_size * 4,
        is_reverse=True,
        use_peepholes=USE_PEEPHOLES)
P
peterzhang2029 已提交
58 59 60 61 62

    forward_last = fluid.layers.sequence_last_step(input=forward)
    backward_first = fluid.layers.sequence_first_step(input=backward)

    return forward_last, backward_first
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127


# FIXME(peterzhang2029): Replace this function with the lstm_unit_op.
def lstm_step(x_t, hidden_t_prev, cell_t_prev, size):
    def linear(inputs):
        return fluid.layers.fc(input=inputs, size=size, bias_attr=True)

    forget_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
    input_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
    output_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
    cell_tilde = fluid.layers.tanh(x=linear([hidden_t_prev, x_t]))

    cell_t = fluid.layers.sums(input=[
        fluid.layers.elementwise_mul(
            x=forget_gate, y=cell_t_prev), fluid.layers.elementwise_mul(
                x=input_gate, y=cell_tilde)
    ])

    hidden_t = fluid.layers.elementwise_mul(
        x=output_gate, y=fluid.layers.tanh(x=cell_t))

    return hidden_t, cell_t


def lstm_decoder_without_attention(target_embedding, decoder_boot, context,
                                   decoder_size):
    rnn = fluid.layers.DynamicRNN()

    cell_init = fluid.layers.fill_constant_batch_size_like(
        input=decoder_boot,
        value=0.0,
        shape=[-1, decoder_size],
        dtype='float32')
    cell_init.stop_gradient = False

    with rnn.block():
        current_word = rnn.step_input(target_embedding)
        context = rnn.static_input(context)

        hidden_mem = rnn.memory(init=decoder_boot, need_reorder=True)
        cell_mem = rnn.memory(init=cell_init)
        decoder_inputs = fluid.layers.concat(
            input=[context, current_word], axis=1)
        h, c = lstm_step(decoder_inputs, hidden_mem, cell_mem, decoder_size)
        rnn.update_memory(hidden_mem, h)
        rnn.update_memory(cell_mem, c)
        out = fluid.layers.fc(input=h,
                              size=target_dict_dim,
                              bias_attr=True,
                              act='softmax')
        rnn.output(out)
    return rnn()


def seq_to_seq_net():
    """Construct a seq2seq network."""

    src_word_idx = fluid.layers.data(
        name='source_sequence', shape=[1], dtype='int64', lod_level=1)

    src_embedding = fluid.layers.embedding(
        input=src_word_idx,
        size=[source_dict_dim, embedding_dim],
        dtype='float32')

P
peterzhang2029 已提交
128
    src_forward_last, src_backward_first = bi_lstm_encoder(
129 130
        input_seq=src_embedding, hidden_size=encoder_size)

P
peterzhang2029 已提交
131 132
    encoded_vector = fluid.layers.concat(
        input=[src_forward_last, src_backward_first], axis=1)
133

P
peterzhang2029 已提交
134
    decoder_boot = fluid.layers.fc(input=src_backward_first,
135 136 137 138 139 140 141 142 143 144 145 146 147
                                   size=decoder_size,
                                   bias_attr=False,
                                   act='tanh')

    trg_word_idx = fluid.layers.data(
        name='target_sequence', shape=[1], dtype='int64', lod_level=1)

    trg_embedding = fluid.layers.embedding(
        input=trg_word_idx,
        size=[target_dict_dim, embedding_dim],
        dtype='float32')

    prediction = lstm_decoder_without_attention(trg_embedding, decoder_boot,
P
peterzhang2029 已提交
148
                                                encoded_vector, decoder_size)
149 150 151
    label = fluid.layers.data(
        name='label_sequence', shape=[1], dtype='int64', lod_level=1)
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
152
    avg_cost = fluid.layers.mean(cost)
153

K
Kexin Zhao 已提交
154
    return avg_cost, prediction
155 156


157
def train(use_cuda, save_dirname=None):
K
Kexin Zhao 已提交
158
    [avg_cost, prediction] = seq_to_seq_net()
159 160 161 162 163 164 165 166 167

    optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
    optimizer.minimize(avg_cost)

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
        batch_size=batch_size)

168
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
169 170 171
    exe = Executor(place)
    exe.run(framework.default_startup_program())

172 173 174 175 176 177 178
    feed_order = ['source_sequence', 'target_sequence', 'label_sequence']
    feed_list = [
        framework.default_main_program().global_block().var(var_name)
        for var_name in feed_order
    ]
    feeder = fluid.DataFeeder(feed_list, place)

179
    batch_id = 0
180
    for pass_id in range(2):
181 182
        for data in train_data():
            outs = exe.run(framework.default_main_program(),
183
                           feed=feeder.feed(data),
184
                           fetch_list=[avg_cost])
185

186
            avg_cost_val = np.array(outs[0])
187 188
            print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                  " avg_cost=" + str(avg_cost_val))
189 190
            if math.isnan(float(avg_cost_val[0])):
                sys.exit("got NaN loss, training failed.")
191
            if batch_id > 3:
K
Kexin Zhao 已提交
192
                if save_dirname is not None:
193 194 195
                    fluid.io.save_inference_model(
                        save_dirname, ['source_sequence',
                                       'target_sequence'], [prediction], exe)
196 197
                return

198 199 200
            batch_id += 1


201
def infer(use_cuda, save_dirname=None):
K
Kexin Zhao 已提交
202 203 204
    if save_dirname is None:
        return

205
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
K
Kexin Zhao 已提交
206 207
    exe = fluid.Executor(place)

208 209 210 211 212 213 214 215 216
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

217
        # Setup input by creating LoDTensor to represent sequence of words.
218 219
        # Here each word is the basic element of the LoDTensor and the shape of
        # each word (base_shape) should be [1] since it is simply an index to
220
        # look up for the corresponding word vector.
221
        # Suppose the recursive_sequence_lengths info is set to [[4, 6]],
222 223 224 225
        # which has only one level of detail. Then the created LoDTensor will have only
        # one higher level structure (sequence of words, or sentence) than the basic
        # element (word). Hence the LoDTensor will hold data for two sentences of
        # length 4 and 6, respectively.
226 227
        # Note that recursive_sequence_lengths should be a list of lists.
        recursive_seq_lens = [[4, 6]]
228 229 230
        base_shape = [1]
        # The range of random integers is [low, high]
        word_data = fluid.create_random_int_lodtensor(
231
            recursive_seq_lens, base_shape, place, low=0, high=1)
232
        trg_word = fluid.create_random_int_lodtensor(
233
            recursive_seq_lens, base_shape, place, low=0, high=1)
234 235 236 237 238 239 240 241 242 243 244 245

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        assert feed_target_names[0] == 'source_sequence'
        assert feed_target_names[1] == 'target_sequence'
        results = exe.run(inference_program,
                          feed={
                              feed_target_names[0]: word_data,
                              feed_target_names[1]: trg_word,
                          },
                          fetch_list=fetch_targets,
                          return_numpy=False)
246
        print(results[0].recursive_sequence_lengths())
247
        np_data = np.array(results[0])
248 249
        print("Inference shape: ", np_data.shape)
        print("Inference results: ", np_data)
K
Kexin Zhao 已提交
250 251


252 253 254 255 256
def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
K
Kexin Zhao 已提交
257
    save_dirname = "rnn_encoder_decoder.inference.model"
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

    train(use_cuda, save_dirname)
    infer(use_cuda, save_dirname)


class TestRnnEncoderDecoder(unittest.TestCase):
    def test_cuda(self):
        with self.scope_prog_guard():
            main(use_cuda=True)

    def test_cpu(self):
        with self.scope_prog_guard():
            main(use_cuda=False)

    @contextlib.contextmanager
    def scope_prog_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield


282
if __name__ == '__main__':
283
    unittest.main()