cifar.py 4.7 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
Q
qijun 已提交
15 16
CIFAR dataset.

Q
qijun 已提交
17 18 19
This module will download dataset from
https://www.cs.toronto.edu/~kriz/cifar.html and parse train/test set into
paddle reader creators.
Q
qijun 已提交
20

Q
qijun 已提交
21 22 23
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000 test
images.
Q
qijun 已提交
24

Q
qijun 已提交
25 26 27
The CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes
containing 600 images each. There are 500 training images and 100 testing
images per class.
Y
Yu Yang 已提交
28

Y
Yu Yang 已提交
29
"""
D
dangqingqing 已提交
30

31 32
from __future__ import print_function

Y
Yu Yang 已提交
33 34
import itertools
import numpy
35
import paddle.dataset.common
Y
Yi Wang 已提交
36
import tarfile
M
minqiyang 已提交
37
import six
38
from six.moves import cPickle as pickle
Y
Yu Yang 已提交
39

Y
Your Name 已提交
40
__all__ = ['train100', 'test100', 'train10', 'test10', 'convert']
Y
Yu Yang 已提交
41

Y
Yi Wang 已提交
42 43
URL_PREFIX = 'https://www.cs.toronto.edu/~kriz/'
CIFAR10_URL = URL_PREFIX + 'cifar-10-python.tar.gz'
Y
Yu Yang 已提交
44
CIFAR10_MD5 = 'c58f30108f718f92721af3b95e74349a'
Y
Yi Wang 已提交
45
CIFAR100_URL = URL_PREFIX + 'cifar-100-python.tar.gz'
Y
Yu Yang 已提交
46 47 48
CIFAR100_MD5 = 'eb9058c3a382ffc7106e4002c42a8d85'


49
def reader_creator(filename, sub_name, cycle=False):
Y
Yi Wang 已提交
50
    def read_batch(batch):
M
minqiyang 已提交
51
        data = batch[six.b('data')]
M
minqiyang 已提交
52 53
        labels = batch.get(
            six.b('labels'), batch.get(six.b('fine_labels'), None))
Y
Yi Wang 已提交
54
        assert labels is not None
M
minqiyang 已提交
55
        for sample, label in six.moves.zip(data, labels):
Y
Yi Wang 已提交
56
            yield (sample / 255.0).astype(numpy.float32), int(label)
Y
Yu Yang 已提交
57

Y
Yi Wang 已提交
58
    def reader():
59
        with tarfile.open(filename, mode='r') as f:
M
minqiyang 已提交
60 61
            names = (each_item.name for each_item in f
                     if sub_name in each_item.name)
Y
Yu Yang 已提交
62

63 64
            while True:
                for name in names:
M
minqiyang 已提交
65 66 67
                    if six.PY2:
                        batch = pickle.load(f.extractfile(name))
                    else:
M
minqiyang 已提交
68 69
                        batch = pickle.load(
                            f.extractfile(name), encoding='bytes')
70 71 72 73
                    for item in read_batch(batch):
                        yield item
                if not cycle:
                    break
Y
Yu Yang 已提交
74

Y
Yu Yang 已提交
75
    return reader
Y
Yu Yang 已提交
76 77


Y
Yi Wang 已提交
78
def train100():
Q
qijun 已提交
79
    """
Q
qijun 已提交
80
    CIFAR-100 training set creator.
Q
qijun 已提交
81 82 83 84

    It returns a reader creator, each sample in the reader is image pixels in
    [0, 1] and label in [0, 99].

Q
qijun 已提交
85
    :return: Training reader creator
Q
qijun 已提交
86 87
    :rtype: callable
    """
Y
Yi Wang 已提交
88
    return reader_creator(
89
        paddle.dataset.common.download(CIFAR100_URL, 'cifar', CIFAR100_MD5),
R
root 已提交
90
        'train')
Y
Yu Yang 已提交
91 92


Y
Yi Wang 已提交
93
def test100():
Q
qijun 已提交
94
    """
X
xuwei06 已提交
95
    CIFAR-100 test set creator.
Q
qijun 已提交
96 97 98 99 100 101 102

    It returns a reader creator, each sample in the reader is image pixels in
    [0, 1] and label in [0, 9].

    :return: Test reader creator.
    :rtype: callable
    """
R
root 已提交
103
    return reader_creator(
104
        paddle.dataset.common.download(CIFAR100_URL, 'cifar', CIFAR100_MD5),
R
root 已提交
105
        'test')
Y
Yu Yang 已提交
106 107


108
def train10(cycle=False):
Q
qijun 已提交
109
    """
Q
qijun 已提交
110
    CIFAR-10 training set creator.
Q
qijun 已提交
111 112 113 114

    It returns a reader creator, each sample in the reader is image pixels in
    [0, 1] and label in [0, 9].

115 116
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
Q
qijun 已提交
117
    :return: Training reader creator
Q
qijun 已提交
118 119
    :rtype: callable
    """
Y
Yi Wang 已提交
120
    return reader_creator(
121
        paddle.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5),
122 123
        'data_batch',
        cycle=cycle)
Y
Yu Yang 已提交
124 125


126
def test10(cycle=False):
Q
qijun 已提交
127
    """
X
xuwei06 已提交
128
    CIFAR-10 test set creator.
Q
qijun 已提交
129 130 131 132

    It returns a reader creator, each sample in the reader is image pixels in
    [0, 1] and label in [0, 9].

133 134
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
Q
qijun 已提交
135 136 137
    :return: Test reader creator.
    :rtype: callable
    """
Y
Yi Wang 已提交
138
    return reader_creator(
139
        paddle.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5),
140 141
        'test_batch',
        cycle=cycle)
Y
Yancey1989 已提交
142 143


144
def fetch():
145 146
    paddle.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5)
    paddle.dataset.common.download(CIFAR100_URL, 'cifar', CIFAR100_MD5)
R
root 已提交
147 148 149 150 151 152


def convert(path):
    """
    Converts dataset to recordio format
    """
153 154 155 156
    paddle.dataset.common.convert(path, train100(), 1000, "cifar_train100")
    paddle.dataset.common.convert(path, test100(), 1000, "cifar_test100")
    paddle.dataset.common.convert(path, train10(), 1000, "cifar_train10")
    paddle.dataset.common.convert(path, test10(), 1000, "cifar_test10")