nn.py 314.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
88
    'group_norm',
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
102
    'roi_align',
X
Xin Pan 已提交
103 104 105 106
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
107
    'resize_nearest',
X
Xin Pan 已提交
108 109 110 111 112 113
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
114
    'selu',
X
Xin Pan 已提交
115 116 117
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
118
    'margin_rank_loss',
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
162
    'space_to_depth',
W
whs 已提交
163
    'affine_grid',
S
sneaxiy 已提交
164
    'sequence_reverse',
165
    'affine_channel',
B
barrierye 已提交
166
    'similarity_focus',
M
minqiyang 已提交
167
    'hash',
D
dengkaipeng 已提交
168
    'grid_sampler',
G
gmcather 已提交
169 170
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
171
    'bilinear_tensor_product',
Y
Yu Yang 已提交
172 173 174 175 176 177 178 179 180
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
181
       is_test=False,
182
       name=None):
Y
Yu Yang 已提交
183
    """
184
    **Fully Connected Layer**
Y
Yu Yang 已提交
185

186 187 188 189 190 191 192 193
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
194
    to the output as well.
C
caoying03 已提交
195

C
caoying03 已提交
196
    This process can be formulated as follows:
197 198 199

    .. math::

200
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
201 202 203

    In the above equation:

C
caoying03 已提交
204 205 206 207
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
208
    * :math:`Act`: The activation function.
C
caoying03 已提交
209
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
210 211

    Args:
R
ranqiu 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
227 228
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
229
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
230
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
231
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
232

233
    Returns:
F
fengjiayi 已提交
234
        Variable: The transformation result.
235 236

    Raises:
C
caoying03 已提交
237
        ValueError: If rank of the input tensor is less than 2.
238 239 240 241

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
242
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
243
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
244
    """
C
caoying03 已提交
245

C
caoying03 已提交
246
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
247 248 249 250

    dtype = helper.input_dtype()

    mul_results = []
251 252
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
253 254 255
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
256

Y
Yu Yang 已提交
257
        w = helper.create_parameter(
258
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
259
        tmp = helper.create_variable_for_type_inference(dtype)
260
        helper.append_op(
261 262 263
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
264
            outputs={"Out": tmp},
M
mozga-intel 已提交
265 266
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
267 268 269 270
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
271
    else:
X
Xin Pan 已提交
272
        pre_bias = helper.create_variable_for_type_inference(dtype)
273
        helper.append_op(
274 275 276
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
277
            attrs={"use_mkldnn": False})
278 279 280 281
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
282 283


284 285 286
def embedding(input,
              size,
              is_sparse=False,
287
              is_distributed=False,
288 289 290
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
291
    """
292 293
    **Embedding Layer**

294
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
295 296
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
297 298 299

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
300 301

    Args:
302 303 304 305 306
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
307
        is_distributed(bool): Whether to run lookup table from remote parameter server.
308 309
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
310
            with zeros whenever lookup encounters it in :attr:`input`. If
311
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
312 313
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
314
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
315

316 317 318
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
319

320 321
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
322

C
chengduoZH 已提交
323
          dict_size = len(dataset.ids)
324
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
325
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
326 327 328
    """

    helper = LayerHelper('embedding', **locals())
329 330 331 332 333
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
334 335
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
336
    tmp = helper.create_variable_for_type_inference(dtype)
337 338
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
339 340 341 342 343
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
344 345 346
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
347
            'remote_prefetch': remote_prefetch,
348 349
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
350 351 352
    return tmp


W
wopeizl 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
369

W
wopeizl 已提交
370 371 372 373 374 375 376 377 378 379 380
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
381

W
wopeizl 已提交
382 383 384 385
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
386

W
wopeizl 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
473 474


Y
Yibing Liu 已提交
475 476 477 478 479 480 481 482 483 484 485
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
486 487
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
488 489 490
    """
    **Dynamic LSTMP Layer**

491 492 493 494 495 496
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
497 498 499 500 501

    The formula is as follows:

    .. math::

502
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
503

504
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
505

506
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
507

508
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
509

510
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
511

512
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
513

514
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
515

Y
Yibing Liu 已提交
516 517 518 519 520 521
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
522
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
523
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
524
          bias vector).
Y
Yibing Liu 已提交
525 526 527
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
528
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
529
    * :math:`h`: The hidden state.
530
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
531 532
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
533
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
534
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
535
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
536 537
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
538 539 540 541

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
542

Y
Yibing Liu 已提交
543 544 545 546 547 548 549 550 551 552 553 554
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
555
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
556 557
                               hidden-hidden weight and projection weight.

558 559
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
560 561
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
562 563
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
564
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
565 566 567 568 569

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
570
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
571 572 573 574 575 576
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
577
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
578 579 580
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
581
                                - The shape is (1 x 7D).
C
chengduo 已提交
582 583 584 585 586

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
587 588 589 590 591 592 593 594 595
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
596
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
597 598
                              default "tanh".
        proj_activation(str): The activation for projection output.
599
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
600 601
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
602 603
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
604 605

    Returns:
606 607 608 609
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
610 611

    Examples:
612

Y
Yibing Liu 已提交
613 614
        .. code-block:: python

615 616 617 618
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
619
            hidden_dim, proj_dim = 512, 256
620
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
621
                                     act=None, bias_attr=None)
622 623 624
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
625 626 627 628
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
629
    """
630

C
chengduo 已提交
631
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
632
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
633
    size = size // 4
Y
Yibing Liu 已提交
634 635 636 637 638 639 640 641 642 643
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
644 645 646 647 648 649
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
678 679 680 681 682 683 684 685 686
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
687
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
688

689
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
690
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
691

G
guosheng 已提交
692 693 694 695 696 697 698 699 700
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
701

G
guosheng 已提交
702
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
703

G
guosheng 已提交
704
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
705 706
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
707 708 709 710
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
711
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
712 713

    Args:
714 715
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
716
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
717
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
718 719
            is the hidden size.
        size(int): The dimension of the gru cell.
720
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
721 722
            hidden-hidden weight matrix. Note:

723
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
724
              :math:`D` is the hidden size.
725
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
726
              The first part are weights of the update gate and reset gate with
727
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
728
              candidate hidden state with shape :math:`(D \\times D)`.
729 730 731 732 733

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
734
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
735
            the bias in the update gate, reset gate and candidate calculations.
736 737 738
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
739 740
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
741
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
742 743 744
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
745
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
746
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
747 748 749 750
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
751 752

    Returns:
G
guosheng 已提交
753
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
754
            and sequence length is the same with the input.
755

G
guosheng 已提交
756
    Examples:
757

G
guosheng 已提交
758 759
        .. code-block:: python

760 761 762 763
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
764
            hidden_dim = 512
765
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
766 767 768 769 770 771 772 773 774 775
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
776
    batch_size = input.shape[0]
G
guosheng 已提交
777
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
778
    if h_0:
G
guosheng 已提交
779
        assert h_0.shape == (
Y
Yancey 已提交
780 781 782
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
783

X
Xin Pan 已提交
784 785 786 787
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
806 807 808
def gru_unit(input,
             hidden,
             size,
809 810
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
811
             activation='tanh',
812
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
813
    """
814
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
815

816 817
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
818

819
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
820

821
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
822

823
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
824 825

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
826 827 828
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
829 830
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

831 832
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
833 834 835
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
836 837 838

    Args:
        input (Variable): The fc transformed input value of current step.
839
        hidden (Variable): The hidden value of gru unit from previous step.
840
        size (integer): The input dimension value.
841 842 843 844 845 846 847 848 849 850 851 852 853 854
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
855
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
856
            the bias in the update gate, reset gate and candidate calculations.
857 858 859
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
860 861
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
862 863 864 865
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
866

867 868 869 870 871 872
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
873

874
             # assuming we have x_t_data and prev_hidden of size=10
875
             x_t = fluid.layers.fc(input=x_t_data, size=30)
876 877
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
878 879 880 881 882 883 884 885 886 887 888 889

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
890
    size = size // 3
Y
Yu Yang 已提交
891 892

    # create weight
893 894
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
895

X
Xin Pan 已提交
896 897 898
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
899
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
900
    # create bias
901
    if helper.bias_attr:
Y
Yu Yang 已提交
902 903 904
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
905
        inputs['Bias'] = bias
Y
Yu Yang 已提交
906 907 908

    helper.append_op(
        type='gru_unit',
909
        inputs=inputs,
Y
Yu Yang 已提交
910 911 912 913 914 915
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
916 917
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
918 919 920 921 922
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
923
@templatedoc()
924
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
925 926 927 928 929 930 931
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
932
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
933 934 935 936
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
937 938 939
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
940 941

    """
Y
Yu Yang 已提交
942 943 944 945 946 947
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
948 949 950 951 952 953 954 955
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
971 972 973 974
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
975

W
wopeizl 已提交
976 977
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
978

W
wopeizl 已提交
979
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
980

W
wopeizl 已提交
981
        label(${label_type}): ${label_comment}
982

W
wopeizl 已提交
983 984
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
985

W
wopeizl 已提交
986 987
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
988

W
wopeizl 已提交
989 990 991 992 993 994 995 996 997 998
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
999
                "Transition": transition,
W
wopeizl 已提交
1000 1001
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1002

W
wopeizl 已提交
1003
    return viterbi_path
Y
Yu Yang 已提交
1004 1005


Y
yi.wu 已提交
1006
@templatedoc()
F
fengjiayi 已提交
1007
def cos_sim(X, Y):
Y
Yu Yang 已提交
1008
    """
Y
yi.wu 已提交
1009 1010 1011
    ${comment}

    Args:
1012 1013
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1014

Y
yi.wu 已提交
1015
    Returns:
1016
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1017
    """
F
fengjiayi 已提交
1018
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1019 1020 1021
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1032 1033 1034 1035 1036
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1037
            dropout_implementation="downgrade_in_infer"):
1038 1039 1040 1041 1042
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1043
    training. The dropout operator randomly sets (according to the given dropout
1044 1045 1046 1047
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1048 1049
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1050 1051 1052 1053 1054 1055 1056
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1068
                                           dropout op can be removed from the program.
P
phlrain 已提交
1069
                                           the program will be efficient
1070

P
phlrain 已提交
1071

1072 1073

    Returns:
1074
        Variable: A tensor variable is the shape with `x`.
1075 1076

    Examples:
1077

1078 1079
        .. code-block:: python

1080 1081
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1082 1083
    """

F
fengjiayi 已提交
1084
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1085 1086 1087
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1088 1089 1090 1091

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1092 1093 1094 1095 1096
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1097 1098 1099 1100
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1101 1102
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1103
        })
1104 1105 1106
    return out


1107
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1108
    """
Y
Yibing Liu 已提交
1109 1110
    **Cross Entropy Layer**

1111 1112 1113
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1114 1115

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1116
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1117

Y
Yibing Liu 已提交
1118
        .. math::
Y
yangyaming 已提交
1119

Y
Yibing Liu 已提交
1120 1121 1122
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1123 1124
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1125 1126 1127 1128 1129

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1130
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1131 1132 1133
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1134 1135
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1136
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1137

Y
Yibing Liu 已提交
1138
    Args:
Y
yangyaming 已提交
1139
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1140 1141 1142 1143
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1144
        label (Variable|list): the ground truth which is a 2-D tensor. When
1145 1146 1147 1148
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1149
        soft_label (bool): a flag indicating whether to
1150
                                           interpretate the given labels as soft
1151
                                           labels. Default: `False`.
M
minqiyang 已提交
1152 1153
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1154
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1155 1156 1157 1158 1159

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1160 1161 1162 1163 1164
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1165 1166 1167 1168 1169 1170

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1171
    """
F
fengjiayi 已提交
1172
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1173
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1174 1175 1176 1177 1178
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1179 1180
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1181 1182 1183
    return out


F
fengjiayi 已提交
1184
def square_error_cost(input, label):
Y
Yu Yang 已提交
1185
    """
1186 1187
    **Square error cost layer**

1188 1189
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1190

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1204 1205
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1206 1207

    Returns:
G
guosheng 已提交
1208
        Variable: The tensor variable storing the element-wise squared error \
1209
                  difference of input and label.
1210 1211 1212 1213 1214 1215 1216 1217

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1218
    """
F
fengjiayi 已提交
1219
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1220
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1221 1222 1223 1224 1225 1226
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1227
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1228
    helper.append_op(
F
fengjiayi 已提交
1229 1230
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1231 1232 1233
    return square_out


Y
yi.wu 已提交
1234
@templatedoc()
Y
Yu Yang 已提交
1235 1236 1237 1238
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1239
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1240
    """
Y
yi.wu 已提交
1241
    **Chunk Evaluator**
Y
yi.wu 已提交
1242

Y
yangyaming 已提交
1243
    This function computes and outputs the precision, recall and
1244
    F1-score of chunk detection.
Y
yi.wu 已提交
1245

Y
yi.wu 已提交
1246 1247 1248 1249 1250 1251 1252 1253
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1254

Y
yi.wu 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1280

Y
yi.wu 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1305
    Args:
1306 1307 1308 1309 1310
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1311

Y
yi.wu 已提交
1312
    Returns:
Y
update  
yi.wu 已提交
1313 1314 1315
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1316

Y
yi.wu 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1329
    """
F
fengjiayi 已提交
1330
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1331 1332

    # prepare output
X
Xin Pan 已提交
1333 1334 1335 1336 1337 1338 1339
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1340 1341 1342 1343 1344 1345 1346 1347

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1348 1349 1350 1351
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1352 1353 1354
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1355 1356
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1357
        })
1358 1359
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1360 1361


1362
@templatedoc()
Y
Yu Yang 已提交
1363 1364 1365 1366 1367 1368 1369
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1370 1371
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1372 1373 1374 1375
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1376 1377 1378 1379 1380 1381 1382

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1396

1397 1398
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1399 1400 1401 1402 1403 1404 1405
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1406
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1417
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1418 1419 1420 1421 1422 1423
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1424
def sequence_softmax(input, use_cudnn=False, name=None):
1425 1426 1427
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1428
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1445 1446 1447
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1448

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1460 1461
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1462
    softmax_out = helper.create_variable_for_type_inference(dtype)
1463 1464 1465 1466 1467 1468 1469 1470
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1471
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1472
    """
1473
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1474
    has the same shape as the input.
Q
qiaolongfei 已提交
1475

1476 1477 1478 1479 1480 1481
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1482
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1483 1484 1485 1486 1487 1488 1489

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1490
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1491 1492 1493 1494 1495 1496 1497 1498

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1499 1500 1501
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1514 1515
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1516
    softmax_out = helper.create_variable_for_type_inference(dtype)
1517 1518 1519 1520 1521 1522 1523 1524
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1525 1526 1527
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1528 1529
           stride=1,
           padding=0,
1530
           dilation=1,
Y
Yu Yang 已提交
1531 1532 1533
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1534
           use_cudnn=True,
1535 1536
           act=None,
           name=None):
Y
Yu Yang 已提交
1537
    """
C
chengduoZH 已提交
1538
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1539 1540
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1541
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1542 1543 1544 1545 1546 1547 1548
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1549 1550 1551
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1552

1553
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1554

C
chengduoZH 已提交
1555 1556
    .. math::

C
refine  
chengduoZH 已提交
1557
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1558

T
tensor-tang 已提交
1559
    Where:
C
chengduoZH 已提交
1560

1561 1562 1563 1564 1565
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1566
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1567 1568 1569

    Example:

1570 1571
        - Input:

W
weixing02 已提交
1572
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1573

W
weixing02 已提交
1574
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1575

1576
        - Output:
T
tensor-tang 已提交
1577

W
weixing02 已提交
1578
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1579

C
chengduoZH 已提交
1580
        Where
1581 1582

        .. math::
C
chengduoZH 已提交
1583

W
weixing02 已提交
1584 1585
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1586 1587

    Args:
1588
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1589
        num_filters(int): The number of filter. It is as same as the output
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1618 1619
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1620 1621
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1622
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1623
            will be named automatically. Default: None
C
chengduoZH 已提交
1624 1625

    Returns:
G
guosheng 已提交
1626
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1627 1628
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1629
    Raises:
1630 1631
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1632

C
chengduoZH 已提交
1633 1634 1635
    Examples:
        .. code-block:: python

1636 1637
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1638 1639 1640
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1641
    assert param_attr is not False, "param_attr should not be False here."
1642
    l_type = 'conv2d'
X
xzl 已提交
1643 1644
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1645
        l_type = 'depthwise_conv2d'
1646 1647 1648 1649

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1650 1651 1652 1653 1654
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1655
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1656

C
chengduoZH 已提交
1657 1658 1659
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1660
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1661

C
chengduoZH 已提交
1662 1663
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1664 1665

    input_shape = input.shape
M
minqiyang 已提交
1666
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1667 1668

    def _get_default_param_initializer():
C
chengduo 已提交
1669 1670
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1671 1672 1673 1674 1675 1676 1677 1678
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1679
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1680

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1695
    helper.append_op(
1696
        type=l_type,
Y
Yu Yang 已提交
1697 1698 1699 1700 1701
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1702 1703 1704
        attrs={
            'strides': stride,
            'paddings': padding,
1705
            'dilations': dilation,
C
chengduoZH 已提交
1706
            'groups': groups,
1707
            'use_cudnn': use_cudnn,
1708
            'use_mkldnn': False,
C
chengduoZH 已提交
1709
        })
Y
Yu Yang 已提交
1710 1711 1712 1713 1714 1715

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1733 1734 1735 1736 1737 1738
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1748 1749
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1750 1751 1752
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1753
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1779
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1780 1781
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1782
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1783 1784
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1785
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1786 1787
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1788
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1789 1790 1791 1792 1793 1794
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1805 1806
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1807 1808
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1809
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1810
            will be named automatically. Default: None.
C
chengduoZH 已提交
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1823 1824
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1825 1826 1827
    """

    l_type = 'conv3d'
C
chengduo 已提交
1828
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1839
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1853 1854 1855
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1856 1857 1858 1859 1860 1861 1862 1863
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1864
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1879
            'use_mkldnn': False
C
chengduoZH 已提交
1880 1881
        })

1882
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1883 1884 1885 1886

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1887
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1888
    """
Y
yangyaming 已提交
1889 1890 1891
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1903
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1904 1905 1906 1907 1908
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1909
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1910 1911 1912 1913 1914 1915 1916

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1917 1918
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1919

L
Luo Tao 已提交
1920 1921
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1922
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1923
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1924
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1925 1926 1927 1928 1929 1930 1931

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1932

Y
yangyaming 已提交
1933
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1934 1935 1936 1937 1938
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1939 1940
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1941
    """
F
fengjiayi 已提交
1942
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1943
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1944 1945
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1946 1947 1948 1949 1950 1951

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1952 1953
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1954

Y
yangyaming 已提交
1955 1956 1957 1958 1959
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1960 1961 1962
    return pool_out


C
add doc  
chengduoZH 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1982
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1983 1984 1985 1986 1987
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1988
def sequence_first_step(input):
L
Luo Tao 已提交
1989
    """
L
Luo Tao 已提交
1990
    This function gets the first step of sequence.
L
Luo Tao 已提交
1991 1992 1993 1994

    .. code-block:: text

       x is a 1-level LoDTensor:
1995
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1996 1997 1998 1999 2000
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2001
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2002
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2003

L
Luo Tao 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2013

Y
yangyaming 已提交
2014
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2015 2016 2017
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2018 2019 2020
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2021
def sequence_last_step(input):
L
Luo Tao 已提交
2022
    """
L
Luo Tao 已提交
2023
    This function gets the last step of sequence.
L
Luo Tao 已提交
2024 2025 2026 2027

    .. code-block:: text

       x is a 1-level LoDTensor:
2028
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2029 2030 2031 2032 2033
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2034
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2035
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2036

L
Luo Tao 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2046

Y
yangyaming 已提交
2047
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2048 2049 2050
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2051 2052 2053
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2054 2055 2056 2057
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2058
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2059 2060 2061 2062 2063
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2064

Y
Yibing Liu 已提交
2065 2066
	- Case:

2067
            Given the input Variable **input**:
2068

2069 2070 2071
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2072

2073
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2074

2075
            the output Variable will be
2076

2077 2078 2079
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2080 2081

    NOTE: The first dimension size of **input**, **offset** and **length**
2082
          should be equal. The **offset** should start from 0.
2083

Y
Yibing Liu 已提交
2084
    Args:
2085
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2086
                         sequences.
Y
Yibing Liu 已提交
2087 2088 2089 2090 2091 2092
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2093
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2104
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2105 2106 2107 2108
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2109
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2124
@templatedoc()
Y
Yu Yang 已提交
2125
def pool2d(input,
C
chengduoZH 已提交
2126 2127
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2128 2129
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2130
           global_pooling=False,
C
chengduoZH 已提交
2131
           use_cudnn=True,
2132
           ceil_mode=False,
2133 2134
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2135
    """
F
fengjiayi 已提交
2136
    ${comment}
2137 2138

    Args:
2139 2140 2141
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2142
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2143
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2144 2145
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2146
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2147 2148 2149 2150 2151 2152
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2153 2154 2155
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2156
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2157
                        layer will be named automatically.
2158
        exclusive (bool): Whether to exclude padding points in average pooling
2159
                          mode, default is true
F
fengjiayi 已提交
2160

2161
    Returns:
F
fengjiayi 已提交
2162
        Variable: The pooling result.
F
fengjiayi 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2176 2177 2178 2179
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2180
                            global_pooling=False)
Y
Yu Yang 已提交
2181 2182 2183 2184 2185
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2186

C
chengduoZH 已提交
2187 2188 2189 2190 2191
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2192 2193 2194 2195
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2196 2197
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2198

C
Add doc  
chengduoZH 已提交
2199
    l_type = 'pool2d'
2200 2201

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2202
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2203
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2204 2205

    helper.append_op(
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2217 2218
            "use_mkldnn": False,
            "exclusive": exclusive,
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2232 2233
           name=None,
           exclusive=True):
2234 2235
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2236
    pooling configurations mentioned in input parameters.
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2249
        exclusive (bool): Whether to exclude padding points in average pooling
2250
                          mode, default is true
2251

2252
    Returns:
2253
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2254 2255 2256 2257 2258
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2259

C
chengduoZH 已提交
2260 2261 2262 2263 2264
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2265 2266 2267
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2268

C
chengduoZH 已提交
2269 2270
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2271

2272 2273
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2274
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2275
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2276 2277

    helper.append_op(
2278
        type=l_type,
Y
Yu Yang 已提交
2279 2280 2281 2282 2283 2284 2285
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2286
            "paddings": pool_padding,
2287
            "use_cudnn": use_cudnn,
2288
            "ceil_mode": ceil_mode,
2289 2290
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2303
               data_layout='NCHW',
Y
Yang Yang 已提交
2304
               in_place=False,
2305 2306
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2307
               moving_variance_name=None,
2308 2309
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2310
    """
Q
qiaolongfei 已提交
2311 2312 2313 2314
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2315

Q
qiaolongfei 已提交
2316
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2317

Q
qiaolongfei 已提交
2318 2319
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2320 2321 2322
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2335 2336

    Args:
Q
qiaolongfei 已提交
2337
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2338 2339 2340 2341
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2342 2343 2344 2345 2346 2347 2348 2349
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2350
        data_layout(string, default NCHW): NCHW|NHWC
2351
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2352 2353 2354 2355
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2356
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2357
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2358 2359

    Returns:
Q
qiaolongfei 已提交
2360
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2361 2362 2363 2364 2365 2366 2367

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2368
    """
C
chengduo 已提交
2369
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2392
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2393

2394 2395
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2396 2397 2398
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2399
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2400
        shape=param_shape,
2401 2402 2403 2404 2405 2406 2407
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2408
            trainable=False,
W
wanghaoshuang 已提交
2409
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2410
        shape=param_shape,
2411 2412
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2413 2414 2415 2416 2417 2418

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2419 2420 2421 2422
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2423

X
Xin Pan 已提交
2424 2425
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2443 2444 2445 2446
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2447
            "use_mkldnn": False,
2448
            "fuse_with_relu": fuse_with_relu
2449
        })
Y
Yu Yang 已提交
2450 2451 2452 2453

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2454
@templatedoc()
G
guosheng 已提交
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2465
    ${comment}
G
guosheng 已提交
2466 2467 2468

    The formula is as follows:

Y
yuyang18 已提交
2469
    ..  math::
G
guosheng 已提交
2470 2471 2472 2473 2474 2475 2476

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2477 2478 2479 2480 2481 2482 2483 2484
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2485

G
guosheng 已提交
2486 2487
    Args:
        input(Variable): The input tensor variable.
2488
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2489
            normalization. Default True.
2490
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2491 2492
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2493
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2494
            Default 1.
2495
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2496
            division by zero. Default 1e-05.
G
guosheng 已提交
2497
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2498 2499
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2500 2501
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2502
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2503 2504
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2505
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2506
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2507
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2508 2509 2510
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2511 2512

    Returns:
Y
yuyang18 已提交
2513
        ${y_comment}
G
guosheng 已提交
2514 2515 2516

    Examples:

Y
yuyang18 已提交
2517 2518 2519
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2535
    if shift:
G
guosheng 已提交
2536 2537 2538 2539 2540 2541
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2542 2543 2544 2545 2546
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2640 2641 2642 2643
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2644 2645 2646
                     padding=0,
                     stride=1,
                     dilation=1,
2647
                     groups=None,
C
caoying03 已提交
2648
                     param_attr=None,
2649
                     bias_attr=None,
C
chengduoZH 已提交
2650
                     use_cudnn=True,
2651
                     act=None,
C
caoying03 已提交
2652
                     name=None):
Y
Yu Yang 已提交
2653
    """
2654 2655 2656 2657 2658 2659 2660 2661
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2662 2663
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2664 2665 2666
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2667 2668 2669 2670 2671

    For each input :math:`X`, the equation is:

    .. math::

2672
        Out = \sigma (W \\ast X + b)
2673

2674
    Where:
2675 2676 2677

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2678 2679 2680 2681
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2682

2683 2684 2685 2686
    Example:

        - Input:

2687
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2688

2689
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2690 2691 2692

        - Output:

2693
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2694 2695

        Where
Y
Yu Yang 已提交
2696

2697 2698
        .. math::

2699 2700 2701 2702
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2703 2704

    Args:
2705 2706 2707 2708
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2709 2710 2711 2712
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2741
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2742 2743 2744
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2745
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2746
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2747 2748

    Returns:
2749
        Variable: The tensor variable storing the convolution transpose result.
2750 2751

    Raises:
2752 2753
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2754 2755 2756 2757

    Examples:
       .. code-block:: python

2758 2759
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2760
    """
C
chengduo 已提交
2761
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2762 2763 2764 2765 2766 2767 2768 2769
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2770 2771 2772
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2773 2774 2775
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2776

C
chengduoZH 已提交
2777 2778
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2779

Y
Yu Yang 已提交
2780 2781 2782 2783 2784
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2785

Y
Yu Yang 已提交
2786 2787
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2788

C
chengduoZH 已提交
2789
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2790
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2791
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2792
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2793
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2794 2795 2796
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2797

2798 2799 2800 2801 2802 2803 2804
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2805
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2806
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2807

Y
Yu Yang 已提交
2808 2809 2810
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2811
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2812
    helper.append_op(
2813
        type=op_type,
Y
Yu Yang 已提交
2814 2815
        inputs={'Input': [input],
                'Filter': [img_filter]},
2816
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2817
        attrs={
2818
            'output_size': output_size,
2819 2820 2821 2822 2823
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2824 2825
        })

2826 2827 2828
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2829 2830


2831
def conv3d_transpose(input,
Y
Yu Yang 已提交
2832 2833 2834
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2835 2836 2837
                     padding=0,
                     stride=1,
                     dilation=1,
2838
                     groups=None,
C
caoying03 已提交
2839
                     param_attr=None,
2840
                     bias_attr=None,
C
chengduoZH 已提交
2841
                     use_cudnn=True,
2842
                     act=None,
C
caoying03 已提交
2843
                     name=None):
Y
Yu Yang 已提交
2844
    """
2845
    **Convlution3D transpose layer**
2846

2847
    The convolution3D transpose layer calculates the output based on the input,
2848
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2849 2850 2851 2852 2853 2854
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2855 2856 2857
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2858 2859 2860 2861 2862

    For each input :math:`X`, the equation is:

    .. math::

2863
        Out = \sigma (W \\ast X + b)
2864 2865 2866

    In the above equation:

2867 2868
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2869 2870 2871 2872
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2873

2874 2875 2876 2877
    Example:

        - Input:

2878
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2879

2880
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2881 2882 2883

        - Output:

2884
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2885 2886

        Where
Y
Yu Yang 已提交
2887

2888 2889
        .. math::

2890 2891 2892
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2893 2894

    Args:
2895
        input(Variable): The input image with [N, C, D, H, W] format.
2896 2897 2898
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2899
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2900 2901
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2902
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2903 2904 2905
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2906 2907
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2908
        stride(int|tuple): The stride size. If stride is a tuple, it must
2909 2910
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2911
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2912 2913 2914
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2915 2916 2917 2918 2919
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2920 2921 2922 2923 2924 2925 2926 2927 2928
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2929 2930
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2931 2932
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2933 2934
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2935 2936

    Returns:
2937
        Variable: The tensor variable storing the convolution transpose result.
2938 2939

    Raises:
2940 2941
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2942 2943 2944 2945

    Examples:
       .. code-block:: python

2946 2947
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2948
    """
C
chengduo 已提交
2949
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2950 2951
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2952
    if not isinstance(input, Variable):
2953
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2954 2955
    input_channel = input.shape[1]

2956 2957 2958
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2959

C
chengduoZH 已提交
2960 2961 2962
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2963 2964 2965 2966 2967 2968
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2969 2970 2971
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2972

2973
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2974
                         padding[0] - 1) // dilation[0] + 1
2975
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2976
                         padding[1] - 1) // dilation[1] + 1
2977
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2978
                         padding[2] - 1) // dilation[2] + 1
2979
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2980
    else:
2981 2982
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2983

2984
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2985
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2986 2987 2988
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2989
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2990
    helper.append_op(
2991
        type=l_type,
Y
Yu Yang 已提交
2992 2993
        inputs={'Input': [input],
                'Filter': [img_filter]},
2994
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2995 2996 2997 2998
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2999
            'groups': groups,
C
chengduoZH 已提交
3000 3001
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3002

3003 3004
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3005
    return out
Y
yangyaming 已提交
3006 3007


Y
yangyaming 已提交
3008
def sequence_expand(x, y, ref_level=-1, name=None):
3009
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3010 3011 3012 3013
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3014 3015 3016 3017 3018

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3019
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3020
                x.data = [[a], [b], [c], [d]]
3021 3022 3023
                x.dims = [4, 1]

            y is a LoDTensor:
3024 3025
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3026

Y
yangyaming 已提交
3027
            ref_level: 0
3028

Y
yangyaming 已提交
3029
            then output is a 1-level LoDTensor:
3030
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3031
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3032 3033 3034 3035
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3036
                x.data = [[a], [b], [c]]
3037 3038 3039
                x.dims = [3, 1]

            y is a LoDTensor:
3040
                y.lod = [[2, 0, 3]]
3041

Y
yangyaming 已提交
3042
            ref_level: -1
3043

Y
yangyaming 已提交
3044 3045 3046
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3047 3048 3049
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3050 3051
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3052
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3053
                        will be named automatically.
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3064
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3065
    """
Y
yangyaming 已提交
3066
    helper = LayerHelper('sequence_expand', input=x, **locals())
3067
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3068
    tmp = helper.create_variable_for_type_inference(dtype)
3069
    helper.append_op(
Y
yangyaming 已提交
3070 3071 3072 3073 3074
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3075
    return tmp
3076 3077


C
chengduo 已提交
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3134
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3135 3136 3137 3138 3139 3140 3141 3142
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3143
@templatedoc()
3144
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3145 3146 3147 3148 3149
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3150 3151 3152
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3153
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3154 3155 3156 3157
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3158 3159 3160
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3161

F
fengjiayi 已提交
3162
    Returns:
M
minqiyang 已提交
3163
        Variable: The padded sequence batch and the original lengths before
3164
                  padding. All sequences has the same length.
M
minqiyang 已提交
3165

F
fengjiayi 已提交
3166 3167 3168 3169 3170 3171 3172
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3173
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3174
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3175 3176 3177 3178 3179
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3180 3181
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3182 3183 3184 3185

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3186 3187 3188 3189 3190 3191
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3192 3193
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3194
        attrs={'padded_length': maxlen})
3195
    return out, length
F
fengjiayi 已提交
3196 3197


3198
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3199
    """
3200
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3201

3202 3203
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3204 3205 3206 3207 3208 3209 3210 3211 3212
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3213 3214 3215
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3216
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3217 3218 3219 3220 3221 3222

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3223
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3224 3225 3226 3227 3228 3229

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3230 3231
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3246
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3258 3259 3260 3261 3262 3263 3264 3265 3266
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3267 3268
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3269 3270 3271

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3272 3273

    This layer does the search in beams for one time step. Specifically, it
3274 3275 3276 3277 3278 3279
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3280

3281 3282 3283 3284 3285 3286 3287 3288
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3289

3290
    Args:
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3316

3317
    Returns:
3318 3319
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3320 3321 3322 3323

    Examples:
        .. code-block:: python

3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3341 3342 3343 3344
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3345 3346 3347
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3348 3349 3350 3351 3352

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3353
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3371 3372 3373 3374 3375 3376 3377
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3378

3379 3380 3381 3382 3383 3384 3385 3386 3387
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3388

3389 3390 3391 3392 3393 3394
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3395

3396 3397 3398 3399 3400 3401 3402 3403
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3404 3405
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3421 3422 3423 3424
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3425
              param_attr=None,
C
caoying03 已提交
3426 3427
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3428 3429 3430 3431
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3432
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3433

3434
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3435

3436
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3437

3438
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3439 3440 3441

            h_t & = o_t tanh(c_t)

3442 3443 3444 3445 3446 3447
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3448 3449 3450

        .. math::

3451
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3452 3453 3454 3455 3456 3457 3458 3459

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3460
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3461 3462

    Args:
Y
yangyaming 已提交
3463 3464 3465 3466 3467 3468
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3469
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3482 3483
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3484 3485

    Returns:
Y
yangyaming 已提交
3486
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3487 3488

    Raises:
3489 3490 3491 3492
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3493 3494 3495 3496 3497 3498

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3499
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3500
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3501
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3518
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3519 3520 3521 3522
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3523 3524
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3525 3526 3527
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3528
    size = cell_t_prev.shape[1]
3529
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3530 3531
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3532
                param_attr=param_attr,
3533
                bias_attr=bias_attr)
Y
yangyaming 已提交
3534
    dtype = x_t.dtype
X
Xin Pan 已提交
3535 3536
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3537 3538 3539 3540 3541 3542 3543 3544 3545

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3546
    return h, c
G
guosheng 已提交
3547 3548


C
caoying03 已提交
3549
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3550
    """
Y
yangyaming 已提交
3551
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3552 3553 3554

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3555
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3556 3557
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3558 3559
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3560
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3561
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3562
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3563 3564
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3565 3566 3567

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3568

G
guosheng 已提交
3569 3570 3571 3572 3573 3574
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3575
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3576 3577 3578 3579
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3580 3581 3582 3583

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3584
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3585 3586 3587
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3588 3589
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3590
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3591 3592
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3593 3594 3595 3596 3597
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3598
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3599 3600 3601 3602
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3603 3604


C
caoying03 已提交
3605
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3606
    """
Y
Yibing Liu 已提交
3607
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3608 3609 3610

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3611 3612 3613
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3614
            must be in the range :math:`[-rank(input), rank(input))`. If
3615
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3616
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3617 3618
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3619
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3620
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3621
                       will be named automatically.
G
guosheng 已提交
3622 3623

    Returns:
Y
Yibing Liu 已提交
3624
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3625

G
guosheng 已提交
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3636 3637
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3638 3639 3640 3641 3642 3643 3644

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3645 3646
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3647
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3648 3649
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3650 3651 3652 3653 3654
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3655
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3656 3657 3658 3659
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3660 3661


C
caoying03 已提交
3662
def reduce_max(input, dim=None, keep_dim=False, name=None):
3663
    """
Y
yangyaming 已提交
3664
    Computes the maximum of tensor elements over the given dimension.
3665 3666 3667

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3668
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3669 3670 3671
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3672
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3673 3674
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3675
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3676 3677
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3678 3679 3680

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3681

3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3693 3694 3695 3696 3697 3698 3699

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3700 3701
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3702
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3703 3704
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3705 3706 3707 3708 3709
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3710
            'dim': dim if dim != None else [0],
3711 3712 3713 3714 3715 3716
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3717
def reduce_min(input, dim=None, keep_dim=False, name=None):
3718
    """
Y
yangyaming 已提交
3719
    Computes the minimum of tensor elements over the given dimension.
3720 3721 3722

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3723
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3724 3725 3726
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3727
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3728 3729
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3730
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3731 3732
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3733 3734 3735

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3736

3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3748 3749 3750 3751 3752 3753 3754

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3755 3756
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3757
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3758 3759
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3760 3761 3762 3763 3764
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3765
            'dim': dim if dim != None else [0],
3766 3767 3768 3769
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3770 3771


3772 3773 3774 3775 3776 3777
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3778
        dim (list|int|None): The dimensions along which the product is performed. If
3779 3780
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3781 3782
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3783 3784 3785
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3786
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3787
            layer will be named automatically.
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3802
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3803
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3804 3805 3806 3807 3808 3809 3810

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3811 3812
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3813
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3814 3815
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3816 3817 3818 3819 3820
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3821
            'dim': dim if dim != None else [0],
3822 3823 3824 3825 3826 3827
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3828
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3829
    """
C
caoying03 已提交
3830
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3831 3832 3833

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3834 3835 3836 3837 3838
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3839
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3840
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3841
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3842 3843
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3844 3845

    Returns:
D
dzhwinter 已提交
3846
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3847 3848 3849 3850 3851 3852 3853 3854 3855

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3856 3857
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3873
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3887 3888 3889 3890 3891 3892 3893 3894 3895


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3896
    .. math::
3897 3898

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3899 3900 3901 3902 3903

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3904
        x(Variable|list): The input tensor to l2_normalize layer.
3905
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3906 3907
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3908
        epsilon(float): The epsilon value is used to avoid division by zero, \
3909
            the defalut value is 1e-10.
3910
        name(str|None): A name for this layer(optional). If set None, the layer \
3911
            will be named automatically.
C
caoying03 已提交
3912 3913

    Returns:
3914
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3915 3916

    Examples:
3917

C
caoying03 已提交
3918 3919
        .. code-block:: python

3920 3921 3922 3923
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3924 3925
    """

F
fengjiayi 已提交
3926 3927
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3928 3929
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3930 3931
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3932
    helper.append_op(
3933 3934 3935 3936
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3937
        attrs={
3938 3939
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3940 3941
        })
    return out
3942 3943


S
sneaxiy 已提交
3944
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3945
    """
Y
ying 已提交
3946 3947 3948 3949
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3950

C
chengduoZH 已提交
3951
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3952
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3953

3954 3955 3956 3957 3958
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3959
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3960

C
chengduoZH 已提交
3961
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3962
      performs in the following way.
G
guosheng 已提交
3963

3964
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3965
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3966
        last two dimensions and a batched matrix multiply supporting broadcast
3967
        applies on the two tensors.
G
guosheng 已提交
3968

Y
ying 已提交
3969 3970
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3971
    removed after matrix multiplication.
G
guosheng 已提交
3972 3973 3974

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3975 3976 3977
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3978
        alpha (float): The scale of output. Default 1.0.
3979
        name(str|None): A name for this layer(optional). If set None, the layer
3980
            will be named automatically.
G
guosheng 已提交
3981 3982

    Returns:
3983
        Variable: The product Tensor variable.
G
guosheng 已提交
3984

G
guosheng 已提交
3985 3986 3987
    Examples:
        .. code-block:: python

3988
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3989 3990
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3991

3992 3993
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3994

3995 3996
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3997

3998 3999
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4000 4001 4002 4003

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4004 4005
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4006

Y
ying 已提交
4007
            # x: [M], y: [N]
4008
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4009
    """
Y
ying 已提交
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4022
            y_shape = y_shape + [1]
Y
ying 已提交
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4039
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4040
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4041
    helper.append_op(
4042 4043 4044 4045
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4046 4047 4048
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4049
            'alpha': float(alpha),
S
sneaxiy 已提交
4050
        })
4051
    return out
4052 4053


4054
def topk(input, k, name=None):
Q
qingqing01 已提交
4055 4056 4057 4058
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4059
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4060 4061 4062 4063 4064 4065
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4087 4088 4089
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4090
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4091
                 of input.
4092
        name(str|None): A name for this layer(optional). If set None, the layer
4093
                       will be named automatically.
F
fengjiayi 已提交
4094
                       Default: None
Q
qingqing01 已提交
4095 4096

    Returns:
4097 4098 4099
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4100
        within the last dimension of input.
Q
qingqing01 已提交
4101

F
fengjiayi 已提交
4102 4103
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4104 4105 4106 4107 4108 4109 4110

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4111 4112
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4124
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4125
    """
Y
ying 已提交
4126 4127 4128 4129 4130 4131 4132 4133 4134
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4135

Y
ying 已提交
4136
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4137

4138
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4139 4140
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4141
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4142

4143
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4144 4145
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4146

4147 4148 4149
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4150
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4151
                          the length of reference string.
4152
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4153
                                     calculating edit distance.
4154
        name (str): The name of this layer. It is optional.
4155

W
wanghaoshuang 已提交
4156
    Returns:
W
wanghaoshuang 已提交
4157
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4158 4159 4160 4161

    Examples:
        .. code-block:: python

T
tink2123 已提交
4162 4163
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4164
            cost = fluid.layers.edit_distance(input=x,label=y)
4165
    """
4166
    helper = LayerHelper("edit_distance", **locals())
4167

4168
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4169
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4170 4171
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4172 4173 4174 4175 4176

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4177
            attrs={"tokens": ignored_tokens})
4178 4179 4180 4181 4182
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4183
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4184
            attrs={"tokens": ignored_tokens})
4185 4186
        label = erased_label

4187
    # edit distance op
X
Xin Pan 已提交
4188 4189
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4190 4191 4192 4193
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4194 4195
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4196 4197
        attrs={"normalized": normalized})

4198
    return edit_distance_out, sequence_num
4199 4200 4201 4202 4203


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4204

Y
ying 已提交
4205 4206 4207 4208
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4226
        input.lod = [[4, 4]]
4227 4228 4229 4230 4231 4232 4233

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4234
        output.lod = [[2, 1]]
4235 4236 4237

    Args:

Y
ying 已提交
4238 4239 4240 4241 4242 4243 4244 4245 4246
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4247
        name (str): The name of this layer. It is optional.
4248 4249

    Returns:
4250
        Variable: CTC greedy decode result. If all the sequences in result were
4251
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4252 4253 4254 4255 4256

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4257

4258
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4259
    """
4260
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4261
    _, topk_indices = topk(input, k=1)
4262 4263

    # ctc align op
X
Xin Pan 已提交
4264
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4265 4266 4267
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4268
        outputs={"Output": [ctc_out]},
4269 4270
        attrs={"merge_repeated": True,
               "blank": blank})
4271
    return ctc_out
4272 4273


W
Wu Yi 已提交
4274
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4275
    """
4276 4277
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4278
    to compute Connectionist Temporal Classification (CTC) loss.
4279 4280
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4281 4282 4283
    input tensor.

    Args:
4284
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4285 4286 4287 4288
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4289
       label (Variable): The ground truth of variable-length sequence,
4290 4291 4292
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4293 4294
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4295 4296 4297
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4298
         follewed by a mean_op.
W
Wu Yi 已提交
4299
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4300 4301

    Returns:
4302 4303
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4304 4305

    Examples:
4306

W
wanghaoshuang 已提交
4307
        .. code-block:: python
4308

4309 4310 4311
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4312 4313

    """
F
fengjiayi 已提交
4314
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4315 4316
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4317 4318 4319 4320 4321 4322
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4323 4324 4325 4326 4327
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4328
    return loss_out
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4344 4345 4346
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4347 4348 4349 4350 4351
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4352

4353
            out.lod  = [[0, 1, 3]]
4354 4355 4356 4357

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4358 4359 4360 4361 4362 4363 4364
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4365 4366 4367

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4368 4369

    Returns:
4370

4371 4372 4373 4374 4375
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4376
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4377
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4378 4379
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4380
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4381 4382 4383 4384 4385 4386
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4387 4388


4389 4390 4391 4392
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4393 4394 4395 4396 4397 4398
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4399
        num_neg_samples=None,
4400 4401 4402
        name=None,
        sampler="uniform",
        custom_dist=None,
4403 4404
        seed=0,
        is_sparse=False):
4405 4406 4407 4408 4409 4410 4411
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4412 4413
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4414
            sample is 1.0.
C
chengduo 已提交
4415 4416 4417 4418 4419 4420 4421 4422 4423
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4424
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4425 4426
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4427 4428 4429
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4430
        custom_dist (float[]): A float[] with size=num_total_classes.
4431 4432 4433 4434
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4435
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4436

4437
    Returns:
Y
Yibing Liu 已提交
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4465 4466 4467 4468 4469 4470 4471 4472 4473

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4474

4475
    """
Y
Yang Yu 已提交
4476 4477 4478
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4479 4480

    dim = input.shape[1]
Y
Yang Yu 已提交
4481 4482 4483 4484 4485 4486
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4487
    inputs = {}
C
chengduo 已提交
4488 4489 4490 4491 4492 4493 4494
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4495 4496 4497
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4498

4499 4500 4501 4502
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4503 4504 4505 4506 4507 4508 4509

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4562 4563 4564 4565
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4566 4567 4568 4569 4570
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4571 4572
    attrs = {
        'num_total_classes': int(num_total_classes),
4573 4574
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4575 4576
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4577
    }
Y
Yang Yu 已提交
4578 4579 4580

    helper.append_op(
        type='nce',
C
chengduo 已提交
4581
        inputs=inputs,
Y
Yang Yu 已提交
4582 4583 4584 4585 4586 4587
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4588
    return cost / (num_neg_samples + 1)
4589 4590


C
chengduo 已提交
4591 4592
def hsigmoid(input,
             label,
4593
             num_classes,
C
chengduo 已提交
4594 4595
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4596
             name=None,
4597 4598 4599
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4600
             is_sparse=False):
W
weixing02 已提交
4601 4602
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4603
    process of language model. This operator organizes the classes into a
4604 4605
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4606 4607 4608 4609 4610 4611
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4612
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4613
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4614

4615 4616 4617 4618 4619 4620 4621 4622 4623
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4624
    Args:
M
minqiyang 已提交
4625
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4626 4627 4628 4629
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4630 4631 4632
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4644 4645 4646 4647 4648 4649 4650
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4651
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4652 4653
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4654 4655

    Returns:
J
JiabinYang 已提交
4656
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4657 4658 4659 4660 4661

    Examples:

        .. code-block:: python

G
guosheng 已提交
4662 4663 4664
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4665 4666 4667 4668
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4669 4670
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4671
    dim = input.shape[1]
4672
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4673 4674 4675
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4676 4677 4678 4679
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4680 4681
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4682 4683 4684
    else:
        pass

J
JiabinYang 已提交
4685 4686
    weights = None

4687
    if not is_custom:
J
JiabinYang 已提交
4688 4689 4690 4691 4692 4693 4694 4695
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4696
            shape=[num_classes, dim],
J
JiabinYang 已提交
4697 4698
            is_bias=False,
            dtype=input.dtype)
4699 4700 4701
    inputs = {
        "X": input,
        "W": weights,
4702 4703
        "PTable": path_table,
        "PathCode": path_code,
4704 4705
        "Label": label
    }
W
weixing02 已提交
4706
    if helper.bias_attr:
4707
        if not is_custom:
J
JiabinYang 已提交
4708 4709
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4710
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4711 4712 4713 4714 4715 4716
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4717
                shape=[num_classes, 1],
J
JiabinYang 已提交
4718 4719 4720
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4721 4722
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4723
        inputs=inputs,
W
weixing02 已提交
4724 4725
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4726 4727
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4728 4729 4730
    return out


Y
fix ci.  
ying 已提交
4731
def transpose(x, perm, name=None):
Y
ying 已提交
4732 4733 4734 4735 4736 4737 4738
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4739 4740 4741
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4742 4743 4744 4745 4746 4747 4748

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4749
            # use append_batch_size=False to avoid prepending extra
4750
            # batch size in shape
4751
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4752
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4753
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4754 4755
    """

Y
fix ci.  
ying 已提交
4756
    if len(perm) != len(x.shape):
Y
ying 已提交
4757 4758 4759
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4760 4761 4762 4763 4764 4765
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4766 4767

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4768 4769
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4770
    helper.append_op(
4771
        type='transpose2',
Y
fix ci.  
ying 已提交
4772
        inputs={'X': [x]},
4773 4774
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4775 4776
        attrs={'axis': perm})
    return out
4777 4778


4779 4780 4781 4782 4783 4784 4785
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4786
    """
4787 4788 4789 4790 4791 4792 4793
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4822 4823 4824 4825 4826 4827 4828 4829 4830
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4831 4832 4833
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4834 4835 4836 4837 4838
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4866 4867 4868
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4881
            output.dims = {8, 8}
4882

4883
            output.lod = [[4, 4]]
4884

D
dzhwinter 已提交
4885
     Examples:
4886 4887 4888

        .. code-block:: python

4889 4890
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4891 4892

    """
W
wanghaoshuang 已提交
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4903 4904 4905 4906 4907 4908 4909
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4910
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4911
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4912
    helper.append_op(
4913
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4914
    return out
4915 4916


Y
yuyang18 已提交
4917
@templatedoc()
4918
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4919 4920
    """
    ${comment}
4921 4922

    Args:
Y
yuyang18 已提交
4923
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4924 4925
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4926 4927 4928 4929 4930
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4931
        ${out_comment}.
4932 4933

    Examples:
Y
yuyang18 已提交
4934 4935 4936 4937
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4938 4939 4940 4941 4942 4943
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4944
    out = helper.create_variable_for_type_inference(dtype)
4945 4946 4947 4948 4949
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4950
    return helper.append_activation(out)
4951 4952


Y
yuyang18 已提交
4953
@templatedoc()
4954 4955
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4956 4957 4958 4959 4960 4961 4962
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4963 4964

    Args:
Y
yuyang18 已提交
4965 4966
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4967 4968

    Returns:
Y
yuyang18 已提交
4969
        ${out_comment}.
4970 4971
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4972 4973 4974 4975 4976

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4977
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4978 4979 4980 4981 4982 4983
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4984 4985


4986 4987 4988
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
4989
                               ignore_index=-100,
4990 4991
                               numeric_stable_mode=False,
                               return_softmax=False):
4992 4993
    """
    **Softmax With Cross Entropy Operator.**
4994

4995 4996 4997 4998
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4999

5000 5001 5002
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5003

5004 5005 5006
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5007

5008
    The equation is as follows:
5009

5010
    1) Hard label (one-hot label, so every sample has exactly one class)
5011

5012 5013 5014 5015
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5016

5017 5018 5019
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5020

5021 5022 5023 5024
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5025 5026 5027
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5028

S
sneaxiy 已提交
5029 5030 5031 5032 5033 5034 5035 5036
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5037 5038 5039 5040 5041 5042 5043 5044
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5045 5046
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
5047
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
5048 5049 5050
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5051 5052 5053
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5054
                                    stable algorithm. Default: False
5055
        return_softmax (bool): A flag indicating whether to return the softmax
5056
                               along with the cross entropy loss. Default: False
5057

5058
    Returns:
5059 5060 5061 5062
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5063
                              2-D tensor with shape [N x K].
5064 5065 5066 5067 5068 5069 5070

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5071 5072
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5073 5074
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5075 5076
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5077 5078 5079 5080 5081 5082
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5083 5084 5085 5086 5087
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5088 5089 5090 5091

    if return_softmax:
        return loss, softmax

5092 5093 5094 5095 5096
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5097 5098
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5099
    For each instance, it computes the smooth L1 loss element by element first
5100
    and then sums all the losses. So the shape of ouput Variable is
5101
    [batch_size, 1].
5102

5103 5104
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5105
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5106
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5107
            L1 loss op with same shape as :attr:`x`.
5108
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5109 5110
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5111
            by this tensor element by element.
5112
        outside_weight (Variable|None): A tensor with rank at least 2. This
5113 5114
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5115
            element by element.
5116
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5117 5118
           scalar with default value 1.0.

5119
    Returns:
5120
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5121 5122 5123 5124 5125

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5126 5127
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5128
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5129
            out = fluid.layers.smooth_l1(x=fc, y=label)
5130
    """
5131

5132
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5133 5134
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5147 5148 5149 5150


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5151
    This layer creates the one-hot representations for input indices.
5152 5153

    Args:
Y
Yibing Liu 已提交
5154 5155
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5156 5157

    Returns:
Y
Yibing Liu 已提交
5158
        Variable: The one-hot representations of input.
5159 5160

    Examples:
C
caoying03 已提交
5161
        .. code-block:: python
5162

Y
Yibing Liu 已提交
5163 5164
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5165 5166
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5167
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5168 5169 5170 5171 5172 5173
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5174 5175


Y
Yu Yang 已提交
5176
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5177
    """
Y
yi.wu 已提交
5178 5179 5180
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5181 5182 5183 5184 5185 5186

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5187 5188
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5189 5190 5191 5192 5193 5194

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5195 5196
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5197 5198
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5199 5200 5201 5202 5203
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5204
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5205
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5206 5207
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5208 5209
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5210 5211 5212
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5213 5214


5215
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5216
    """
C
caoying03 已提交
5217 5218
    Gives a new shape to the input Tensor without changing its data.

5219 5220 5221 5222 5223
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5224

5225
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5226

5227 5228 5229 5230
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5231
    2. 0 means the actual dimension value is going to be copied from the
5232 5233 5234 5235
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5236 5237

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5238
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5239
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5240

5241
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5242 5243
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5244 5245
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5246
    dimensions.
C
caoying03 已提交
5247

5248
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5249 5250 5251 5252
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5253 5254

    Args:
5255
        x(variable): The input tensor.
C
caoying03 已提交
5256 5257
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5258 5259 5260 5261 5262
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5263 5264
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5265 5266 5267 5268 5269 5270 5271
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5272
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5273

5274
    Returns:
G
guosheng 已提交
5275 5276 5277 5278
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5279

X
Xin Pan 已提交
5280 5281 5282
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5283 5284
    Examples:
        .. code-block:: python
G
guosheng 已提交
5285

5286
            data = fluid.layers.data(
5287
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5288
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5289
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5290 5291 5292
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5293
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5294 5295 5296 5297 5298
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5299

5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5315
    helper = LayerHelper("reshape2", **locals())
5316 5317
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5318
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5319
    helper.append_op(
5320
        type="reshape2",
X
Xin Pan 已提交
5321
        inputs=inputs,
D
dzhwinter 已提交
5322
        attrs={"shape": shape},
5323 5324
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5325

D
dzhwinter 已提交
5326
    return helper.append_activation(out)
5327

5328

5329
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5330
    """
M
minqiyang 已提交
5331 5332 5333
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5334
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5335

Y
Yibing Liu 已提交
5336 5337
    Examples:
    Case 1:
M
minqiyang 已提交
5338
      Given
Y
Yibing Liu 已提交
5339 5340 5341 5342 5343 5344 5345 5346
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5347
        and
Y
Yibing Liu 已提交
5348 5349 5350
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5351

Y
Yibing Liu 已提交
5352
    Args:
5353
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5354
        axes (list): List of integers, indicating the dimensions to be squeezed.
5355
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5356 5357 5358 5359 5360 5361 5362 5363

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5364
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5365 5366
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5367 5368
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5369
    helper.append_op(
5370
        type="squeeze2",
5371
        inputs={"X": input},
Y
Yibing Liu 已提交
5372
        attrs={"axes": axes},
5373 5374
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5375

5376 5377 5378
    return out


5379
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5380
    """
M
minqiyang 已提交
5381 5382 5383
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5384

M
minqiyang 已提交
5385 5386
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5387
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5388

Y
Yibing Liu 已提交
5389
    Args:
5390
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5391
        axes (list): List of integers, indicating the dimensions to be inserted.
5392
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5393 5394 5395 5396 5397 5398 5399 5400

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5401
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5402 5403
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5404 5405
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5406
    helper.append_op(
5407
        type="unsqueeze2",
5408
        inputs={"X": input},
Y
Yibing Liu 已提交
5409
        attrs={"axes": axes},
5410 5411
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5412

5413 5414
    return out

5415

Y
yangyaming 已提交
5416
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5417
    """
Y
Yibing Liu 已提交
5418
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5419 5420 5421 5422
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5423
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5424 5425 5426 5427 5428 5429

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5430
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5431 5432 5433
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5434
            target_lod: [4, 2]
Y
yangyaming 已提交
5435 5436

            then we get a 1-level LoDTensor:
5437
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5438 5439 5440 5441 5442 5443
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5444
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5445 5446 5447 5448
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5449
                y.data = [[2, 4]]
Y
yangyaming 已提交
5450 5451 5452
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5453
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5454 5455 5456 5457 5458 5459
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5460
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5461 5462 5463 5464
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5465
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5466 5467 5468 5469
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5470
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5471 5472 5473 5474 5475
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5476
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5477
                           from :attr:`y`.
Y
yangyaming 已提交
5478
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5479
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5480 5481

    Returns:
Y
Yibing Liu 已提交
5482
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5483 5484

    Raises:
Y
Yibing Liu 已提交
5485
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5486 5487 5488 5489 5490 5491 5492 5493 5494

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5495
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5521
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5550 5551
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5564 5565 5566
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5580 5581 5582 5583


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5584
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5585
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5586

G
guosheng 已提交
5587 5588 5589 5590
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5613
                         The length of :attr:paddings must be
G
guosheng 已提交
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5624

G
guosheng 已提交
5625 5626 5627 5628 5629 5630
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5631
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5632 5633 5634 5635 5636 5637 5638
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5639 5640


C
chengduo 已提交
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5711
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5712 5713 5714 5715 5716 5717 5718 5719 5720
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5721 5722 5723 5724 5725 5726 5727
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5728 5729
    called label-smoothing regularization (LSR).

5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5753
                              be :math:`(1, class\_num)`.
5754 5755
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5756
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5776
    smooth_label = helper.create_variable_for_type_inference(dtype)
5777 5778 5779 5780 5781 5782 5783
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5784 5785


W
wopeizl 已提交
5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5822 5823


J
jerrywgz 已提交
5824 5825 5826 5827 5828 5829
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5830 5831
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5848 5849 5850
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5851 5852 5853 5854 5855 5856
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5857
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5898 5899
        .. code-block:: python

W
whs 已提交
5900 5901 5902 5903
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5904
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5905 5906 5907 5908 5909 5910
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5911 5912


5913 5914 5915 5916
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
5917 5918
                 resample='BILINEAR',
                 actual_shape=None):
5919
    """
Q
qiaolongfei 已提交
5920
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5921

5922
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5923 5924 5925
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5926

5927
        'BILINEAR' : Bilinear interpolation
5928
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
5929

5930
    Args:
5931
        input (Variable): The input tensor of image resize layer,
5932 5933
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5934
        out_shape(list|tuple|Variable|None): Output shape of image resize
5935 5936
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5937
        scale(float|None): The multiplier for the input height or width.
5938 5939 5940
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5941 5942
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5943
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
5944
                       currently.
5945
                       Default: 'BILINEAR'
5946 5947 5948
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
5949
                                :attr:`out_shape` and :attr:`scale` specifying
5950 5951 5952 5953 5954 5955 5956
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
5957 5958
                                constructing stage.
                                Default: None
5959 5960

    Returns:
Q
update  
qiaolongfei 已提交
5961 5962
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5963

5964 5965 5966
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
5967
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
5968 5969 5970 5971
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

5972 5973 5974
    Examples:
        .. code-block:: python

5975
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
5976
    """
5977 5978 5979 5980
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
5981 5982
    if resample not in resample_methods:
        raise ValueError(
5983
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
5984
        )
5985
    resample_type = resample_methods[resample]
5986
    if out_shape is None and scale is None:
5987
        raise ValueError("One of out_shape and scale must not be None.")
5988
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
5989
    dtype = helper.input_dtype()
5990 5991 5992 5993

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5994 5995 5996
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5997
    if out_shape is not None:
5998 5999 6000 6001
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6002
            inputs['OutSize'] = out_shape
6003 6004 6005 6006 6007 6008 6009 6010
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6011 6012 6013 6014
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6015 6016 6017 6018 6019
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6020
    out = helper.create_variable_for_type_inference(dtype)
6021
    helper.append_op(
6022
        type='{}_interp'.format(resample_type),
6023
        inputs=inputs,
6024
        outputs={"Out": out},
6025 6026 6027
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6028
    return out
F
stash  
fengjiayi 已提交
6029 6030


6031
@templatedoc(op_type="bilinear_interp")
6032 6033 6034 6035 6036
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6037
    """
6038 6039
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6040 6041
    in priority order.

6042 6043 6044 6045
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6046 6047
    again in the other direction.

6048
    For details of bilinear interpolation, please refer to Wikipedia:
6049
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6050 6051 6052 6053 6054

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6055

Y
yuyang18 已提交
6056 6057 6058 6059 6060
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6061 6062 6063
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6064
                                :attr:`out_shape` and :attr:`scale` specifying
6065 6066 6067 6068 6069 6070 6071
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6072 6073
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6074 6075 6076

    Returns:
        ${out_comment}.
6077 6078 6079 6080 6081

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6082 6083
    """

6084
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6085 6086


6087
@templatedoc(op_type="nearest_interp")
6088 6089 6090 6091 6092
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6093
    """
6094
    Resize input by performing nearest neighbor interpolation in both the
6095 6096
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6097 6098
    out_shape and scale in priority order.

6099
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6100
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6101 6102 6103 6104 6105

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6106

Y
yuyang18 已提交
6107 6108 6109 6110 6111
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6112 6113 6114
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6115
                                :attr:`out_shape` and :attr:`scale` specifying
6116 6117 6118 6119 6120 6121 6122
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6123 6124
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6125 6126 6127

    Returns:
        ${out_comment}.
6128 6129 6130 6131 6132

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6133 6134
    """

6135
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6136 6137 6138 6139


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6140 6141 6142
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6143 6144 6145 6146 6147 6148 6149
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6150
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6151

6152
    Returns:
Q
update  
qiaolongfei 已提交
6153
        Variable: The output is a 4-D tensor of the shape
6154
        (num_batches, channls, out_h, out_w).
6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6165 6166 6167
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6168 6169 6170
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6171 6172
def gather(input, index):
    """
Q
qiaolongfei 已提交
6173 6174
    **Gather Layer**

6175
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6176 6177 6178 6179
    of X indexed by `index` and concatenate them together.

    .. math::

6180
        Out = X[Index]
W
whs 已提交
6181 6182 6183 6184 6185 6186 6187


    .. code-block:: text


                Given:

6188 6189
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6190 6191 6192 6193 6194 6195 6196 6197 6198 6199
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6200
        input (Variable): The source input with rank>=1.
W
whs 已提交
6201 6202 6203 6204 6205 6206
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6207

W
whs 已提交
6208 6209 6210 6211 6212 6213
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6214
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6215 6216 6217 6218 6219 6220 6221 6222
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6254
    out = helper.create_variable_for_type_inference(dtype)
6255 6256 6257 6258 6259 6260 6261 6262 6263
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6314
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6315 6316 6317 6318 6319 6320 6321 6322 6323
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6337

6338 6339 6340
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6341
    """
F
stash  
fengjiayi 已提交
6342
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6343
    dtype = x.dtype
X
Xin Pan 已提交
6344
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6345
    if seed is None:
6346
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6347
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6348
    if isinstance(seed, int):
F
fengjiayi 已提交
6349 6350 6351 6352 6353
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6354 6355 6356 6357
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6358
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6359 6360
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6361 6362
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6363
    return out
W
whs 已提交
6364 6365


6366
def log(x, name=None):
W
wanghaoshuang 已提交
6367 6368 6369 6370 6371
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6372
        Out = \\ln(x)
W
wanghaoshuang 已提交
6373 6374

    Args:
6375
        x (Variable): Input tensor.
6376 6377
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6378 6379 6380 6381 6382 6383 6384 6385

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6386
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6387 6388
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6389
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6390
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6391
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6392 6393 6394
    return out


6395
def relu(x, name=None):
W
wanghaoshuang 已提交
6396 6397
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6398
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6399 6400 6401 6402
    the tensor elementwise.

    .. math::

6403
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6404 6405

    Args:
6406
        x (Variable): The input tensor.
6407 6408
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6409 6410 6411 6412 6413 6414 6415 6416

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6417
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6418 6419
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6420
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6421
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6422
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6423
    return out
6424 6425


C
chengduo 已提交
6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6467 6468 6469
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6470 6471 6472 6473
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6474
    .. math::
6475 6476

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6477

6478
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6479 6480 6481 6482 6483
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6484
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6485
                           Its shape should be the same as input.
6486
        num_classes (int): The possible number of labels.
W
whs 已提交
6487 6488 6489 6490

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6491
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6492 6493 6494 6495

    Examples:

        .. code-block:: python
6496

W
whs 已提交
6497 6498 6499 6500
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6501 6502 6503
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6504 6505
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6506 6507
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6508
        outputs={
W
whs 已提交
6509 6510 6511
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6512 6513 6514
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6589
            isinstance(shape, Variable)):
6590 6591 6592 6593 6594
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6595
    out = helper.create_variable_for_type_inference(x.dtype)
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6613 6614


W
whs 已提交
6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6632

W
whs 已提交
6633
              out_shape = [2, 3, 5, 5]
6634

W
whs 已提交
6635
          Step 1:
6636

W
whs 已提交
6637 6638 6639
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6640

W
whs 已提交
6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6711
            isinstance(out_shape, Variable)):
W
whs 已提交
6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6733 6734 6735 6736 6737 6738 6739 6740
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6741

6742 6743
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6744

6745 6746 6747 6748
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6749

6750 6751 6752 6753 6754
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6755 6756 6757

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6793
    out = helper.create_variable_for_type_inference("float32")
6794 6795 6796 6797 6798 6799 6800 6801

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6802 6803


M
minqiyang 已提交
6804 6805
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6806
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6807
    which compares left score and right score passed in.
M
minqiyang 已提交
6808
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6809 6810 6811 6812 6813 6814

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6815
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6816 6817
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6818
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6819 6820 6821
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6822
       Variable: The ranking loss.
M
minqiyang 已提交
6823
    Raises:
M
minqiyang 已提交
6824
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6825 6826 6827 6828 6829 6830 6831
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6832
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6833 6834 6835 6836 6837 6838
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6839 6840
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6866

W
whs 已提交
6867 6868
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6869

W
whs 已提交
6870
      Case 0:
M
minqiyang 已提交
6871

W
whs 已提交
6872 6873 6874
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6875

W
whs 已提交
6876 6877 6878
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6879

W
whs 已提交
6880
      Case 1:
M
minqiyang 已提交
6881

W
whs 已提交
6882 6883
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6884

W
whs 已提交
6885 6886 6887
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6888

W
whs 已提交
6889
      Case 2:
M
minqiyang 已提交
6890

W
whs 已提交
6891 6892
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6893

W
whs 已提交
6894 6895 6896
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6897 6898


W
whs 已提交
6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6925
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
6952 6953 6954 6955 6956

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
6957 6958
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
6959 6960
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6961
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
6982 6983 6984 6985 6986

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
6987 6988
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
6989 6990
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6991
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7012 7013 7014 7015 7016

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7017 7018
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7019 7020
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7021
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7043 7044 7045 7046 7047

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7048
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7049
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7050 7051
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7052
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7075 7076 7077 7078 7079

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7080 7081
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7082 7083
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7084
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7106 7107 7108 7109 7110

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7111 7112
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7113 7114
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7115
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7116 7117 7118 7119 7120 7121 7122 7123
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7124 7125 7126 7127
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7128
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7129 7130 7131

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7132 7133
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                       weight (alpha).
J
jerrywgz 已提交
7134 7135 7136 7137
        mode (string): The mode for weight sharing. It supports all, channel
                       and element. all: all elements share same weight
                       channel:elements in a channel share same weight
                       element:each element has a weight
J
jerrywgz 已提交
7138
        name(str|None): A name for this layer(optional). If set None, the layer
J
jerrywgz 已提交
7139
                       will be named automatically.
J
jerrywgz 已提交
7140 7141 7142 7143 7144 7145 7146 7147

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7148
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7162
        attr=helper.param_attr,
J
jerrywgz 已提交
7163 7164 7165 7166
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7167
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7168 7169 7170 7171 7172 7173 7174 7175 7176
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7177 7178 7179 7180 7181 7182 7183 7184 7185 7186
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7187
    Returns:
7188
        output(${out_type}): ${out_comment}
7189 7190 7191 7192 7193 7194 7195

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7196 7197
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7198
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7217
    Returns:
7218
        output(${out_type}): ${out_comment}
7219 7220 7221 7222 7223 7224 7225

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7226 7227
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7228
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7246
    Returns:
7247
        output(${out_type}): ${out_comment}
7248 7249 7250 7251 7252 7253 7254

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7255 7256
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7257
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7258 7259 7260 7261 7262 7263 7264 7265
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7279

7280 7281 7282 7283 7284 7285 7286 7287 7288 7289
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7290 7291
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7307
        ValueError: If axis is not in range [0, rank(x)].
7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7324 7325
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7326
    helper.append_op(
7327
        type='flatten2',
7328
        inputs={"X": x},
7329 7330
        outputs={'Out': out,
                 'XShape': x_shape},
7331 7332
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7333 7334


C
chenweihang 已提交
7335
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7336
    """
C
chenweihang 已提交
7337
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7338
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7339 7340
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7341

C
chenweihang 已提交
7342 7343 7344 7345
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7346
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7347 7348 7349 7350 7351 7352
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7353
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7354 7355 7356
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7357 7358 7359
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7371 7372
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7373 7374 7375 7376 7377 7378
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7379
    return out
7380

7381

S
sneaxiy 已提交
7382 7383 7384 7385 7386 7387 7388 7389 7390
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7391

S
sneaxiy 已提交
7392
    .. math::
7393

S
sneaxiy 已提交
7394 7395 7396
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7397
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7398 7399 7400 7401
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7402 7403 7404
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7405 7406
    Returns:
        Variable: The output sequence mask.
7407

S
sneaxiy 已提交
7408 7409
    """

Q
qingqing01 已提交
7410
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7411
    if name is None:
X
Xin Pan 已提交
7412
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7413
    else:
X
Xin Pan 已提交
7414
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7415

Q
qingqing01 已提交
7416 7417 7418
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7419 7420
        outputs={'Y': out},
        attrs={
7421
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7422 7423 7424
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7425 7426


X
Xin Pan 已提交
7427
def stack(x, axis=0):
S
sneaxiy 已提交
7428 7429 7430 7431
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7432 7433 7434 7435 7436 7437 7438

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7439
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7440
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7441 7442

    Args:
7443
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7444
        axis (int|None): The axis along which all inputs are stacked.
7445

S
sneaxiy 已提交
7446 7447
    Returns:
        Variable: The stacked variable.
7448

S
sneaxiy 已提交
7449 7450
    """

X
Xin Pan 已提交
7451 7452 7453 7454 7455 7456
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7457
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7458
    helper.append_op(
S
sneaxiy 已提交
7459 7460
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7461

X
Xin Pan 已提交
7462
    return out
D
dzhwinter 已提交
7463 7464 7465 7466 7467 7468 7469


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7470

D
dzhwinter 已提交
7471 7472 7473
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7474
    raised.
D
dzhwinter 已提交
7475 7476

    Args:
M
minqiyang 已提交
7477
        x (Variable): Input variable.
D
dzhwinter 已提交
7478 7479
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7480

D
dzhwinter 已提交
7481 7482
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7483

D
dzhwinter 已提交
7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7495
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7496 7497 7498 7499 7500 7501 7502 7503

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7516

W
whs 已提交
7517 7518 7519 7520
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7521

W
whs 已提交
7522
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7523

W
whs 已提交
7524
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7525

W
whs 已提交
7526 7527 7528 7529
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7530

W
whs 已提交
7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7547
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7548 7549 7550 7551 7552 7553
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7554 7555


G
fix  
gongweibao 已提交
7556 7557 7558
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7559
@templatedoc()
G
fix  
gongweibao 已提交
7560 7561 7562 7563 7564 7565 7566 7567 7568
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7569
    ${comment}
G
fix  
gongweibao 已提交
7570 7571

    Args:
G
gongweibao 已提交
7572 7573 7574
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7575
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7576 7577 7578
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7579 7580
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7581
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7582 7583 7584 7585

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7586
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7603 7604


G
gongweibao 已提交
7605
@templatedoc()
X
Xin Pan 已提交
7606
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7607
    """
G
gongweibao 已提交
7608
    ${comment}
G
fix  
gongweibao 已提交
7609 7610

    Args:
G
gongweibao 已提交
7611 7612 7613 7614
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7615 7616 7617
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7618
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7619 7620 7621 7622

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7623
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7624 7625 7626 7627 7628 7629 7630 7631 7632 7633
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7634
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7635 7636 7637 7638 7639
        })

    return out


G
gongweibao 已提交
7640
@templatedoc()
G
fix  
gongweibao 已提交
7641
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7642
    """
G
gongweibao 已提交
7643
    ${comment}
G
fix  
gongweibao 已提交
7644 7645

    Args:
G
gongweibao 已提交
7646 7647 7648 7649
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7650
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7651 7652

    Returns:
G
gongweibao 已提交
7653
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7654 7655 7656 7657

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7658
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7670
@templatedoc()
G
fix  
gongweibao 已提交
7671 7672 7673 7674 7675 7676 7677 7678 7679
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7680
    ${comment}
G
fix  
gongweibao 已提交
7681 7682

    Args:
G
gongweibao 已提交
7683 7684
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7685
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7686 7687 7688 7689
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7690
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7691 7692

    Returns:
G
gongweibao 已提交
7693
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7694 7695 7696
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7697
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7716
@templatedoc()
X
Xin Pan 已提交
7717
def sum(x):
G
fix  
gongweibao 已提交
7718
    """
G
gongweibao 已提交
7719
    ${comment}
G
fix  
gongweibao 已提交
7720 7721

    Args:
G
gongweibao 已提交
7722
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7723 7724

    Returns:
G
gongweibao 已提交
7725
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7726 7727 7728
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7729 7730
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7731 7732 7733 7734
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7735
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7736 7737 7738 7739

    return out


G
gongweibao 已提交
7740
@templatedoc()
G
fix  
gongweibao 已提交
7741 7742
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7743
    ${comment}
G
fix  
gongweibao 已提交
7744 7745

    Args:
G
gongweibao 已提交
7746 7747 7748 7749
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7750 7751

    Returns:
G
gongweibao 已提交
7752
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7753 7754 7755 7756

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7757 7758
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7770
@templatedoc()
G
fix  
gongweibao 已提交
7771 7772
def shape(input):
    """
G
gongweibao 已提交
7773
    ${comment}
G
fix  
gongweibao 已提交
7774 7775

    Args:
G
gongweibao 已提交
7776
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7777 7778

    Returns:
G
gongweibao 已提交
7779
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7780 7781 7782 7783

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7784 7785
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7786
    helper.append_op(
G
fix  
gongweibao 已提交
7787
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7788 7789

    return out
G
merge  
gongweibao 已提交
7790 7791


S
sneaxiy 已提交
7792 7793 7794 7795 7796 7797 7798 7799
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7800 7801
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7802
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7803 7804 7805
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7806

S
sneaxiy 已提交
7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7818
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7819 7820 7821 7822 7823 7824 7825 7826
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7827
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7828
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7829 7830 7831 7832 7833 7834

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7835
    if name is None:
X
Xin Pan 已提交
7836
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7837 7838 7839
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7840 7841 7842 7843 7844 7845 7846 7847 7848 7849

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7850
    return helper.append_activation(out)
S
sneaxiy 已提交
7851 7852


X
Xin Pan 已提交
7853
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7854 7855 7856
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7857
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7858 7859 7860
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7861
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7862 7863 7864
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7865
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7866 7867 7868
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7869
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7870 7871 7872
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7873
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7874 7875 7876
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7877
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7889 7890
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7891
        ])
M
minqiyang 已提交
7892 7893


7894
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7895 7896
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7897 7898
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7899 7900 7901

    if out is None:
        if name is None:
X
Xin Pan 已提交
7902
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7918
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7930 7931 7932 7933 7934 7935 7936 7937 7938

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
7939 7940 7941 7942 7943 7944 7945
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7946
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7958 7959 7960 7961 7962 7963 7964 7965 7966

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
7967 7968 7969 7970 7971 7972 7973
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7974
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7986 7987 7988 7989 7990 7991 7992 7993 7994

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
7995 7996 7997 7998 7999 8000 8001
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8002
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8003 8004 8005 8006 8007 8008 8009 8010 8011 8012
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8013 8014 8015 8016 8017 8018 8019

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8020 8021 8022 8023
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8039 8040 8041 8042 8043 8044 8045

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8046 8047 8048 8049 8050
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8051 8052 8053 8054
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8078 8079 8080 8081 8082 8083 8084

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8085 8086 8087 8088 8089
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8090 8091 8092 8093
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8094 8095 8096 8097 8098 8099 8100 8101

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8120
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8150
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8151 8152 8153 8154 8155 8156 8157 8158 8159
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8160 8161
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8184
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8214
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8215 8216 8217 8218 8219 8220 8221 8222 8223 8224
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8225 8226


J
JiabinYang 已提交
8227
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8228
    """
J
JiabinYang 已提交
8229
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8230 8231 8232

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8233
    The attr blocksize indicates the input block size.
8234 8235

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8236
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8237 8238

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8239
    (but keeping all data)
J
JiabinYang 已提交
8240

J
JiabinYang 已提交
8241
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8242
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8243 8244 8245 8246 8247
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8248
    Args:
J
JiabinYang 已提交
8249
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8250
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8251 8252

    Returns:
J
JiabinYang 已提交
8253
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8254 8255

    Raises:
J
JiabinYang 已提交
8256
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8257 8258 8259 8260 8261 8262

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8263
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8264
                x=data, blocksize=2)
J
JiabinYang 已提交
8265 8266
    """

J
JiabinYang 已提交
8267
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8268

J
JiabinYang 已提交
8269 8270
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8271 8272

    if name is None:
J
JiabinYang 已提交
8273 8274
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8275 8276 8277 8278 8279
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8280
        type="space_to_depth",
J
JiabinYang 已提交
8281
        inputs={"X": x},
J
JiabinYang 已提交
8282
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8283
        outputs={"Out": out})
J
JiabinYang 已提交
8284 8285
    return out

J
JiabinYang 已提交
8286

S
sneaxiy 已提交
8287 8288
@templatedoc()
def sequence_reverse(x, name=None):
8289
    """
S
sneaxiy 已提交
8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8301
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8302 8303 8304 8305 8306 8307 8308 8309 8310 8311
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8312 8313


8314 8315 8316 8317 8318 8319
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8320

8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8340
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8353 8354


B
barrierye 已提交
8355
def similarity_focus(input, axis, indexes, name=None):
8356
    """
B
barrierye 已提交
8357
    SimilarityFocus Operator
B
barrierye 已提交
8358 8359

    Generate a similarity focus mask with the same shape of input using the following method:
8360 8361 8362
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8363
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8364 8365 8366 8367 8368 8369 8370
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8371
       each index.
B
barrierye 已提交
8372 8373 8374 8375
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8425
    Args:
8426
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8427
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8428
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8429
            1, 2 or 3.
B
barrierye 已提交
8430
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8431 8432

    Returns:
8433
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8434
            as the input.
8435

B
barrierye 已提交
8436 8437 8438
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8439 8440
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8453 8454 8455 8456 8457
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8458 8459 8460 8461 8462 8463 8464
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8465 8466


M
minqiyang 已提交
8467 8468
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8469 8470
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8471 8472
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8511
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8512
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8513 8514 8515 8516 8517 8518 8519 8520 8521

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8522 8523
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8524 8525
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8526 8527 8528 8529 8530 8531 8532
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8533 8534


D
dengkaipeng 已提交
8535
@templatedoc()
8536 8537
def grid_sampler(x, grid, name=None):
    """
8538
    This operation samples input X by using bilinear interpolation based on
8539
    flow field grid, which is usually gennerated by affine_grid. The grid of
8540 8541 8542 8543
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8544
    interpolation value of 4 nearest corner points.
8545 8546 8547 8548 8549 8550 8551 8552

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8553
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8583 8584

    Args:
8585 8586 8587
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8588 8589

    Returns:
8590
        out(Variable): Output of shape [N, C, H, W] data samples input X
8591 8592 8593 8594 8595 8596 8597 8598 8599
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8600 8601 8602 8603 8604 8605 8606 8607 8608
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8609
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8610 8611
    ipts = {'X': x, 'Grid': grid}

8612
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8613 8614 8615
    return out


G
gmcather 已提交
8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8710 8711 8712 8713 8714 8715 8716 8717 8718 8719


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8720
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8721

Q
Qiao Longfei 已提交
8722
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8723 8724 8725
    For example:

    .. math::
8726
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8727

Q
Qiao Longfei 已提交
8728
    In this formula:
8729 8730
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8731
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8732
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8733 8734 8735
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8736 8737
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8738 8739 8740
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8741
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8742
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8743
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8744 8745 8746 8747
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8748
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8749 8750 8751 8752

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
8753
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8754 8755
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8756
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8757 8758 8759 8760

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
8761
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)