compiler.py 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import multiprocessing
import os
import six
X
polish  
Xin Pan 已提交
18
import sys
19 20 21 22 23 24 25 26 27 28 29 30 31 32
from .. import compat as cpt

from . import core

ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
BuildStrategy = core.ParallelExecutor.BuildStrategy


def _place_obj(place):
    p = core.Place()
    p.set_place(place)
    return p


X
polish  
Xin Pan 已提交
33
class CompiledProgram(object):
X
polish  
Xin Pan 已提交
34 35 36
    """
    Compiles a Program for execution.

X
Xin Pan 已提交
37 38 39 40
    1. Users first create the program with layers.
    2. Optionally, users use CompiledProgram to optimize the program before run.
    3. The original program or CompiledProgram is run by executor.

X
polish  
Xin Pan 已提交
41 42 43 44 45 46 47 48
    The CompiledProgram is used to transform a program for various
    optimizations, for example.
      * Pre-compute some logic once so that each run is faster.
      * Transform the program so that it can run in multiple devices.
      * TODO: transform the program for optimized inference or distributed
              training.

    Example:
X
Xin Pan 已提交
49 50 51 52 53 54 55 56 57 58
        .. code-block:: python
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup)
            compiled_prog = compiler.CompiledProgram(main).with_data_parallel(
                loss_name=loss.name)
            for i in range(5):
                test_loss, = exe.run(compiled_prog,
                                     feed=feed_dict,
                                     fetch_list=[loss.name])
X
polish  
Xin Pan 已提交
59 60 61 62 63

    Args:
        program: Program instance that contains the model logic.
    """

64 65
    def __init__(self, program):
        self._program = program
X
polish  
Xin Pan 已提交
66 67 68
        self._scope = None
        self._place = None
        self._executor = None
69 70 71
        self._compiled = False
        self._is_data_parallel = False

X
Xin Pan 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    def with_data_parallel(self,
                           loss_name=None,
                           build_strategy=None,
                           exec_strategy=None,
                           share_vars_from=None):
        """Configs the program to run in data parallel way.

        Args:
            loss_name (str): The loss name must set in training. Default None.
            build_strategy(BuildStrategy): build_strategy is used to
                build the graph so it can run on multiple devices/cores with
                optimized topology.
                For more information, please refer to fluid.BuildStrategy.
                Default None.
            exec_strategy(ExecutionStrategy): exec_strategy is used to
                to select the a way to execute the graph, for example how many
                threads are used, how many iterations to clean up the temp
                variables. For more information, please refer
                to fluid.ExecutionStrategy. Default None.
            share_vars_from(CompiledProgram): If provide, this CompiledProgram
                will share variables from `share_vars_from`. `share_vars_from`
                must be run by the executor before this CompiledProgram so that
                vars are ready.
        Returns:
            self
        """
98 99 100 101 102
        assert not self._is_data_parallel, "Already compiled with parallel."
        self._is_data_parallel = True
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy
        self._loss_name = loss_name
X
polish  
Xin Pan 已提交
103
        self._share_vars_from = share_vars_from
X
fix  
Xin Pan 已提交
104 105 106 107
        if self._exec_strategy is None:
            self._exec_strategy = ExecutionStrategy()
        if self._build_strategy is None:
            self._build_strategy = BuildStrategy()
108 109
        return self

X
polish  
Xin Pan 已提交
110 111 112 113 114 115
    def _with_distributed(self):
        raise NotImplementedError()

    def _with_inference_optimize(self):
        raise NotImplementedError()

116
    def _compile_data_parallel(self):
X
polish  
Xin Pan 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129
        if self._share_vars_from:
            if self._scope:
                sys.stderr.write("share_vars_from is set, scope is ignored.\n")
            if not self._share_vars_from._is_data_parallel:
                raise ValueError("share_vars_from is not data parallel. Cannot "
                                 "share vars from it.")
            if self._share_vars_from._executor is None:
                raise ValueError(
                    "share_vars_from is not compiled and run, so there is no "
                    "var to share.")
            self._local_scopes = self._share_vars_from._executor.local_scopes()
        else:
            self._local_scopes = []
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

        self._exec_strategy.use_cuda = isinstance(self._place, core.CUDAPlace)
        if self._exec_strategy.use_cuda:
            gpus_env = os.getenv("FLAGS_selected_gpus")
            if gpus_env:
                gpus = [int(s) for s in gpus_env.split(",")]
            else:
                gpus = [
                    i for i in six.moves.range(core.get_cuda_device_count())
                ]
            self._places = [core.CUDAPlace(i) for i in gpus]
        else:
            cpu_num = int(
                os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            self._places = [core.CPUPlace() for _ in six.moves.range(cpu_num)]
        assert self._places, "no place for execution"

        if self._exec_strategy.num_threads == 0:
            if self._exec_strategy.use_cuda:
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
                self._exec_strategy.num_threads = len(self._places) * 4
            else:
                cpu_num = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
                self._exec_strategy.num_threads = cpu_num * 2

        trainers_endpoints = self._program._trainers_endpoints
        if self._build_strategy.num_trainers > 1 and trainers_endpoints:
            assert self._build_strategy.num_trainers == len(
                trainers_endpoints), "num_trainers == len(end_points)"
            self._build_strategy.trainers_endpoints = trainers_endpoints

        self._persistable_vars = set([
            cpt.to_text(v.name)
            for v in [
                var for var in self._program.list_vars()
                if var.persistable and var.type != core.VarDesc.VarType.RAW
            ]
        ])

        places = list(map(_place_obj, self._places))
        return core.ParallelExecutor(
            places, self._persistable_vars, self._program.desc,
            cpt.to_text(self._loss_name)
            if self._loss_name else six.u(''), self._scope, self._local_scopes,
            self._exec_strategy, self._build_strategy)

    def _compile(self, scope, place):
X
Xin Pan 已提交
179 180 181 182 183 184 185 186 187 188
        """Compile the program based on the configs.

        Args:
            scope: The variables (resources) that are associated with
               this compiled program.
            place: The location that the compiled program will be run on.

        Returns:
            self
        """
189
        if self._compiled:
X
polish  
Xin Pan 已提交
190 191 192 193
            if scope and self._scope != scope:
                raise ValueError("Cannot compile with different scope")
            if place and self._place != place:
                raise ValueError("Cannot compile with different place")
194
            return self
X
fix  
Xin Pan 已提交
195
        self._compiled = True
196 197 198 199 200 201 202 203 204

        self._scope = scope
        self._place = place
        if self._is_data_parallel:
            self._executor = self._compile_data_parallel()
        else:
            p = _place_obj(self._place)
            self._executor = core.Executor(p)
        return self