prune.py 14.7 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Q
qingqing01 已提交
19 20 21 22 23 24 25
import os, sys

# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

W
whs 已提交
26 27 28 29 30 31 32
import time
import numpy as np
import datetime
from collections import deque
from paddleslim.prune import Pruner
from paddleslim.analysis import flops
from paddle import fluid
Q
qingqing01 已提交
33

W
whs 已提交
34 35 36 37 38 39 40
from ppdet.experimental import mixed_precision_context
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.data.reader import create_reader
from ppdet.utils import dist_utils
from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results
from ppdet.utils.stats import TrainingStats
from ppdet.utils.cli import ArgsParser
41
from ppdet.utils.check import check_gpu, check_version, check_config
W
whs 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
import ppdet.utils.checkpoint as checkpoint

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def main():
    env = os.environ
    FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
    if FLAGS.dist:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        import random
        local_seed = (99 + trainer_id)
        random.seed(local_seed)
        np.random.seed(local_seed)

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
62
    check_config(cfg)
W
whs 已提交
63 64 65 66
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
    # check if paddlepaddle version is satisfied
    check_version()
67 68

    main_arch = cfg.architecture
W
whs 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(os.environ.get('CPU_NUM', 1))

    if 'FLAGS_selected_gpus' in env:
        device_id = int(env['FLAGS_selected_gpus'])
    else:
        device_id = 0
    place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')

    # build program
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            model = create(main_arch)
            if FLAGS.fp16:
                assert (getattr(model.backbone, 'norm_type', None)
                        != 'affine_channel'), \
                    '--fp16 currently does not support affine channel, ' \
                    ' please modify backbone settings to use batch norm'

            with mixed_precision_context(FLAGS.loss_scale, FLAGS.fp16) as ctx:
                inputs_def = cfg['TrainReader']['inputs_def']
                feed_vars, train_loader = model.build_inputs(**inputs_def)
                train_fetches = model.train(feed_vars)
                loss = train_fetches['loss']
                if FLAGS.fp16:
                    loss *= ctx.get_loss_scale_var()
                lr = lr_builder()
                optimizer = optim_builder(lr)
                optimizer.minimize(loss)
                if FLAGS.fp16:
                    loss /= ctx.get_loss_scale_var()

    # parse train fetches
    train_keys, train_values, _ = parse_fetches(train_fetches)
    train_values.append(lr)

    if FLAGS.print_params:
115 116
        param_delimit_str = '-' * 20 + "All parameters in current graph" + '-' * 20
        print(param_delimit_str)
W
whs 已提交
117 118
        for block in train_prog.blocks:
            for param in block.all_parameters():
119 120 121
                print("parameter name: {}\tshape: {}".format(param.name,
                                                             param.shape))
        print('-' * len(param_delimit_str))
W
whs 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        return

    if FLAGS.eval:
        eval_prog = fluid.Program()
        with fluid.program_guard(eval_prog, startup_prog):
            with fluid.unique_name.guard():
                model = create(main_arch)
                inputs_def = cfg['EvalReader']['inputs_def']
                feed_vars, eval_loader = model.build_inputs(**inputs_def)
                fetches = model.eval(feed_vars)
        eval_prog = eval_prog.clone(True)

        eval_reader = create_reader(cfg.EvalReader)
        eval_loader.set_sample_list_generator(eval_reader, place)

        # parse eval fetches
        extra_keys = []
        if cfg.metric == 'COCO':
            extra_keys = ['im_info', 'im_id', 'im_shape']
        if cfg.metric == 'VOC':
K
Kaipeng Deng 已提交
142
            extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
W
whs 已提交
143
        if cfg.metric == 'WIDERFACE':
K
Kaipeng Deng 已提交
144
            extra_keys = ['im_id', 'im_shape', 'gt_bbox']
W
whs 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
                                                         extra_keys)

    # compile program for multi-devices
    build_strategy = fluid.BuildStrategy()
    build_strategy.fuse_all_optimizer_ops = False
    build_strategy.fuse_elewise_add_act_ops = True
    # only enable sync_bn in multi GPU devices
    sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn'
    build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \
        and cfg.use_gpu

    exec_strategy = fluid.ExecutionStrategy()
    # iteration number when CompiledProgram tries to drop local execution scopes.
    # Set it to be 1 to save memory usages, so that unused variables in
    # local execution scopes can be deleted after each iteration.
    exec_strategy.num_iteration_per_drop_scope = 1
    if FLAGS.dist:
        dist_utils.prepare_for_multi_process(exe, build_strategy, startup_prog,
                                             train_prog)
        exec_strategy.num_threads = 1

    exe.run(startup_prog)

    fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'

    start_iter = 0
K
Kaipeng Deng 已提交
172
    if cfg.pretrain_weights:
173
        checkpoint.load_params(exe, train_prog, cfg.pretrain_weights)
W
whs 已提交
174 175

    pruned_params = FLAGS.pruned_params
176 177
    assert FLAGS.pruned_params is not None, \
        "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
W
whs 已提交
178 179
    pruned_params = FLAGS.pruned_params.strip().split(",")
    logger.info("pruned params: {}".format(pruned_params))
180
    pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")]
W
whs 已提交
181
    logger.info("pruned ratios: {}".format(pruned_ratios))
182 183 184 185 186
    assert len(pruned_params) == len(pruned_ratios), \
        "The length of pruned params and pruned ratios should be equal."
    assert (pruned_ratios > [0] * len(pruned_ratios) and
            pruned_ratios < [1] * len(pruned_ratios)
            ), "The elements of pruned ratios should be in range (0, 1)."
W
whs 已提交
187

188 189 190
    assert FLAGS.prune_criterion in ['l1_norm', 'geometry_median'], \
            "unsupported prune criterion {}".format(FLAGS.prune_criterion)
    pruner = Pruner(criterion=FLAGS.prune_criterion)
W
whs 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    train_prog = pruner.prune(
        train_prog,
        fluid.global_scope(),
        params=pruned_params,
        ratios=pruned_ratios,
        place=place,
        only_graph=False)[0]

    compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
        loss_name=loss.name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    if FLAGS.eval:

        base_flops = flops(eval_prog)
        eval_prog = pruner.prune(
            eval_prog,
            fluid.global_scope(),
            params=pruned_params,
            ratios=pruned_ratios,
            place=place,
            only_graph=True)[0]
        pruned_flops = flops(eval_prog)
215 216 217
        logger.info("FLOPs -{}; total FLOPs: {}; pruned FLOPs: {}".format(
            float(base_flops - pruned_flops) / base_flops, base_flops,
            pruned_flops))
W
whs 已提交
218 219
        compiled_eval_prog = fluid.compiler.CompiledProgram(eval_prog)

K
Kaipeng Deng 已提交
220 221 222 223
    if FLAGS.resume_checkpoint:
        checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint)
        start_iter = checkpoint.global_step()

W
whs 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    train_reader = create_reader(cfg.TrainReader, (cfg.max_iters - start_iter) *
                                 devices_num, cfg)
    train_loader.set_sample_list_generator(train_reader, place)

    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

    # if map_type not set, use default 11point, only use in VOC eval
    map_type = cfg.map_type if 'map_type' in cfg else '11point'

    train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
    train_loader.start()
    start_time = time.time()
    end_time = time.time()

    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(cfg.save_dir, cfg_name)
    time_stat = deque(maxlen=cfg.log_smooth_window)
    best_box_ap_list = [0.0, 0]  #[map, iter]

    # use tb-paddle to log data
    if FLAGS.use_tb:
        from tb_paddle import SummaryWriter
        tb_writer = SummaryWriter(FLAGS.tb_log_dir)
        tb_loss_step = 0
        tb_mAP_step = 0

    if FLAGS.eval:
        # evaluation
256
        results = eval_run(exe, compiled_eval_prog, eval_loader, eval_keys,
W
whs 已提交
257
                           eval_values, eval_cls, cfg)
W
whs 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
        resolution = None
        if 'mask' in results[0]:
            resolution = model.mask_head.resolution
        dataset = cfg['EvalReader']['dataset']
        box_ap_stats = eval_results(
            results,
            cfg.metric,
            cfg.num_classes,
            resolution,
            is_bbox_normalized,
            FLAGS.output_eval,
            map_type,
            dataset=dataset)

    for it in range(start_iter, cfg.max_iters):
        start_time = end_time
        end_time = time.time()
        time_stat.append(end_time - start_time)
        time_cost = np.mean(time_stat)
        eta_sec = (cfg.max_iters - it) * time_cost
        eta = str(datetime.timedelta(seconds=int(eta_sec)))
        outs = exe.run(compiled_train_prog, fetch_list=train_values)
        stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])}

        # use tb-paddle to log loss
        if FLAGS.use_tb:
            if it % cfg.log_iter == 0:
                for loss_name, loss_value in stats.items():
                    tb_writer.add_scalar(loss_name, loss_value, tb_loss_step)
                tb_loss_step += 1

        train_stats.update(stats)
        logs = train_stats.log()
        if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0):
            strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
                it, np.mean(outs[-1]), logs, time_cost, eta)
            logger.info(strs)

        if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \
           and (not FLAGS.dist or trainer_id == 0):
            save_name = str(it) if it != cfg.max_iters - 1 else "model_final"
            checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name))

            if FLAGS.eval:
                # evaluation
303 304 305 306 307 308 309 310
                results = eval_run(
                    exe,
                    compiled_eval_prog,
                    eval_loader,
                    eval_keys,
                    eval_values,
                    eval_cls,
                    cfg=cfg)
W
whs 已提交
311 312 313 314
                resolution = None
                if 'mask' in results[0]:
                    resolution = model.mask_head.resolution
                box_ap_stats = eval_results(
K
Kaipeng Deng 已提交
315 316 317 318 319 320 321 322
                    results,
                    cfg.metric,
                    cfg.num_classes,
                    resolution,
                    is_bbox_normalized,
                    FLAGS.output_eval,
                    map_type,
                    dataset=dataset)
W
whs 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386

                # use tb_paddle to log mAP
                if FLAGS.use_tb:
                    tb_writer.add_scalar("mAP", box_ap_stats[0], tb_mAP_step)
                    tb_mAP_step += 1

                if box_ap_stats[0] > best_box_ap_list[0]:
                    best_box_ap_list[0] = box_ap_stats[0]
                    best_box_ap_list[1] = it
                    checkpoint.save(exe, train_prog,
                                    os.path.join(save_dir, "best_model"))
                logger.info("Best test box ap: {}, in iter: {}".format(
                    best_box_ap_list[0], best_box_ap_list[1]))

    train_loader.reset()


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "-r",
        "--resume_checkpoint",
        default=None,
        type=str,
        help="Checkpoint path for resuming training.")
    parser.add_argument(
        "--fp16",
        action='store_true',
        default=False,
        help="Enable mixed precision training.")
    parser.add_argument(
        "--loss_scale",
        default=8.,
        type=float,
        help="Mixed precision training loss scale.")
    parser.add_argument(
        "--eval",
        action='store_true',
        default=False,
        help="Whether to perform evaluation in train")
    parser.add_argument(
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation directory, default is current directory.")
    parser.add_argument(
        "--use_tb",
        type=bool,
        default=False,
        help="whether to record the data to Tensorboard.")
    parser.add_argument(
        '--tb_log_dir',
        type=str,
        default="tb_log_dir/scalar",
        help='Tensorboard logging directory for scalar.')

    parser.add_argument(
        "-p",
        "--pruned_params",
        default=None,
        type=str,
        help="The parameters to be pruned when calculating sensitivities.")
    parser.add_argument(
        "--pruned_ratios",
387
        default=None,
W
whs 已提交
388
        type=str,
389 390
        help="The ratios pruned iteratively for each parameter when calculating sensitivities."
    )
W
whs 已提交
391 392 393 394 395 396
    parser.add_argument(
        "-P",
        "--print_params",
        default=False,
        action='store_true',
        help="Whether to only print the parameters' names and shapes.")
397 398 399 400 401 402
    parser.add_argument(
        "--prune_criterion",
        default='l1_norm',
        type=str,
        help="criterion function type for channels sorting in pruning, can be set " \
             "as 'l1_norm' or 'geometry_median' currently, default 'l1_norm'")
W
whs 已提交
403 404
    FLAGS = parser.parse_args()
    main()