send_op.cc 5.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14

15
#include <future>  // NOLINT
武毅 已提交
16 17
#include <ostream>

18
#include "paddle/fluid/framework/blocking_queue.h"
Y
Yi Wang 已提交
19 20 21
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
W
Wu Yi 已提交
22
#include "paddle/fluid/operators/distributed/distributed.h"
Q
Qiao Longfei 已提交
23
#include "paddle/fluid/operators/distributed/parameter_send.h"
24
#include "paddle/fluid/operators/distributed/rpc_common.h"
W
Wu Yi 已提交
25
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
26
#include "paddle/fluid/platform/profiler.h"
武毅 已提交
27 28 29 30 31 32

namespace paddle {
namespace operators {

class SendOp : public framework::OperatorBase {
 public:
G
gongweibao 已提交
33 34 35 36
  SendOp(const std::string& type, const framework::VariableNameMap& inputs,
         const framework::VariableNameMap& outputs,
         const framework::AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
T
typhoonzero 已提交
37

T
typhoonzero 已提交
38 39
  void RunImpl(const framework::Scope& scope,
               const platform::Place& place) const override {
T
typhoonzero 已提交
40
    auto ins = Inputs("X");
G
gongweibao 已提交
41

Q
Qiao Longfei 已提交
42
    auto epmap = Attr<std::vector<std::string>>("epmap");
43
    int sync_send = Attr<int>("sync_mode");
Q
qiaolongfei 已提交
44

Q
Qiao Longfei 已提交
45
    auto send_varnames = Attr<std::vector<std::string>>("send_varnames");
Q
Qiao Longfei 已提交
46
    auto height_sections = Attr<std::vector<int64_t>>("sections");
T
typhoonzero 已提交
47

Q
Qiao Longfei 已提交
48 49 50 51 52 53
    if (send_varnames.size() > 0) {
      PADDLE_ENFORCE_EQ(ins.size(), 1, "");
      framework::RuntimeContext ctx(Inputs(), Outputs(), scope);
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      auto* dev_ctx = pool.Get(place);
54 55
      auto exe_ctx =
          framework::ExecutionContext(*this, scope, *dev_ctx, ctx, nullptr);
Q
Qiao Longfei 已提交
56
      auto send_functor = distributed::ParameterSend<float>();
57 58 59
      auto rpc_ctx = distributed::RpcContext(ins[0], send_varnames, epmap,
                                             height_sections);
      send_functor(rpc_ctx, exe_ctx, scope, static_cast<bool>(sync_send));
Q
Qiao Longfei 已提交
60 61 62 63
    } else {
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      auto& ctx = *pool.Get(place);
T
typhoonzero 已提交
64

Q
Qiao Longfei 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77
      distributed::RPCClient* rpc_client =
          distributed::RPCClient::GetInstance<RPCCLIENT_T>(
              Attr<int>("trainer_id"));

      std::vector<distributed::VarHandlePtr> rets;
      for (size_t i = 0; i < ins.size(); i++) {
        if (NeedSend(scope, ins[i])) {
          VLOG(3) << "sending " << ins[i] << " to " << epmap[i];
          rets.push_back(
              rpc_client->AsyncSendVar(epmap[i], ctx, scope, ins[i]));
        } else {
          VLOG(3) << "don't send no-initialied variable: " << ins[i];
        }
78
      }
Q
Qiao Longfei 已提交
79 80 81 82 83 84
      if (sync_send) {
        for (size_t i = 0; i < rets.size(); i++) {
          VLOG(7) << "before sync_send " << ins[i] << "from " << epmap[i];
          PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
          VLOG(7) << "after sync_send " << ins[i] << "from " << epmap[i];
        }
85
      }
武毅 已提交
86 87 88 89 90 91
    }
  }
};

class SendOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
92
  void Make() {
93
    AddInput("X", "(Tensor, SelectedRows) Input variables to be sent")
T
typhoonzero 已提交
94
        .AsDuplicable();
95 96
    AddOutput("Out", "(Any) Dummy outputs, used for control dependency")
        .AsDuplicable();
武毅 已提交
97
    AddComment(R"DOC(
A
Abhinav Arora 已提交
98
Send operator
武毅 已提交
99

100
This operator will send variables to listen_and_serve op at the parameter server.
武毅 已提交
101
)DOC");
102 103 104 105
    AddAttr<int>("sync_mode",
                 "(int, default 0)"
                 "sync send or async send.")
        .SetDefault(0);
W
Wu Yi 已提交
106
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
T
typhoonzero 已提交
107 108 109
    AddAttr<std::vector<std::string>>("epmap",
                                      "(string vector, default 127.0.0.1:6164)"
                                      "Server endpoints in the order of input "
T
typhoonzero 已提交
110
                                      "variables for mapping")
111
        .SetDefault({"127.0.0.1:6164"});
Q
Qiao Longfei 已提交
112 113 114 115 116
    AddAttr<std::vector<int64_t>>("sections",
                                  "(vector<int>) "
                                  "the length of each output along the "
                                  "specified axis.")
        .SetDefault(std::vector<int64_t>{});
Q
Qiao Longfei 已提交
117 118 119 120 121 122 123 124 125 126
    AddAttr<std::vector<std::string>>(
        "send_varnames",
        "(vector<string>) "
        "the splited output varnames to send to pserver")
        .SetDefault(std::vector<std::string>{});
    AddAttr<int>("num",
                 "(int, default 0)"
                 "Number of sub-tensors. This must evenly divide "
                 "Input.dims()[axis]")
        .SetDefault(0);
武毅 已提交
127 128 129
  }
};

T
typhoonzero 已提交
130 131 132 133 134
class SendOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* ctx) const override {}
};

武毅 已提交
135 136 137 138 139
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

T
typhoonzero 已提交
140
REGISTER_OPERATOR(send, ops::SendOp, paddle::framework::EmptyGradOpMaker,
Y
Yancey1989 已提交
141
                  ops::SendOpMaker, ops::SendOpShapeInference);