MKLDNNConcatLayer.cpp 6.1 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
T
tensor-tang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MKLDNNConcatLayer.h"

using namespace mkldnn;  // NOLINT
typedef memory::format format;

namespace paddle {

REGISTER_LAYER(mkldnn_concat, MKLDNNConcatLayer);

bool MKLDNNConcatLayer::init(const LayerMap& layerMap,
                             const ParameterMap& parameterMap) {
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
    return false;
  }
  CHECK_GT(inputLayers_.size(), 1UL);
  CHECK(!biasParameter_);
  return true;
}

void MKLDNNConcatLayer::reshape(
35
    int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) {
T
tensor-tang 已提交
36 37 38
  reshapeInput(bs, ih, iw);
  ic = inputLayers_[0]->getSize() / ih / iw;
  CHECK_EQ((size_t)ic * ih * iw, inputLayers_[0]->getSize());
39 40
  CHECK_EQ(inputLayers_[0]->getOutputValue()->getElementCnt(),
           (size_t)bs * ic * ih * iw);
T
tensor-tang 已提交
41 42 43
  CHECK_GT(inputLayers_.size(), 1UL);
  channels_.resize(inputLayers_.size());
  channels_[0] = ic;
44
  oc = ic;
T
tensor-tang 已提交
45
  for (size_t i = 1; i < inputLayers_.size(); i++) {
46
    int batchsize = 0, height = 0, witdh = 0;
T
tensor-tang 已提交
47 48 49 50 51 52 53
    reshapeInput(batchsize, height, witdh, i);
    CHECK_EQ(bs, batchsize);
    CHECK_EQ(ih, height);
    CHECK_EQ(iw, witdh);

    channels_[i] = inputLayers_[i]->getSize() / height / witdh;
    CHECK_EQ((size_t)channels_[i] * height * witdh, inputLayers_[i]->getSize());
54
    oc += channels_[i];
T
tensor-tang 已提交
55 56 57 58
  }
  oh = ih;
  ow = iw;
  reshapeOutput(oh, ow);
59
  resizeOutput(bs, oc * oh * ow);
T
tensor-tang 已提交
60 61 62
}

void MKLDNNConcatLayer::resetFwd(std::vector<primitive>& pipeline,
63
                                 std::vector<MKLDNNMatrixPtr>& inputs,
T
tensor-tang 已提交
64
                                 MKLDNNMatrixPtr& out) {
65
  resetFwdBuffers(inputs, out);
T
tensor-tang 已提交
66 67

  std::shared_ptr<concat::primitive_desc> fwdPD;
68
  resetFwdPD(fwdPD, inputs, out);
T
tensor-tang 已提交
69

70
  resetFwdPipeline(pipeline, fwdPD, inputs, out);
T
tensor-tang 已提交
71 72 73
}

void MKLDNNConcatLayer::resetBwd(std::vector<primitive>& pipeline,
74
                                 std::vector<MKLDNNMatrixPtr>& inputs,
T
tensor-tang 已提交
75
                                 MKLDNNMatrixPtr& out) {
76
  resetBwdBuffers(inputs, out);
T
tensor-tang 已提交
77

78
  resetBwdPipeline(pipeline, bwds_, inputs, out);
T
tensor-tang 已提交
79 80 81 82 83 84 85
}

void MKLDNNConcatLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
                                        MKLDNNMatrixPtr& out) {
  inputs.resize(inputLayers_.size());
  bool has8c = false, has16c = false, hasnc = false;
  for (size_t i = 0; i < inputs.size(); i++) {
86
    resetInValue(inputs[i], nullptr, i, channels_[i]);
87
    inputs[i]->downSpatial();
T
tensor-tang 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    CHECK(inputs[i]);
    auto dm = inputs[i]->getDims();
    // inputs format can be different, but ndims must equal
    CHECK(i == 0 || dm.size() == inputs[0]->getDims().size());
    CHECK_EQ(bs_, dm[0]);
    CHECK_EQ(channels_[i], dm[1]);
    if (dm.size() > 2) {
      CHECK_EQ(ih_, dm[2]);
      CHECK_EQ(iw_, dm[3]);
    }
    if (inputs[i]->getFormat() == format::nc) {
      hasnc = true;
    }
    if (inputs[i]->getFormat() == format::nChw8c) {
      has8c = true;
    }
    if (inputs[i]->getFormat() == format::nChw16c) {
      has16c = true;
    }
  }

  format outFmt;
  if (has16c && oc_ % 16 == 0) {
    outFmt = format::nChw16c;
  } else if (has8c && oc_ % 8 == 0) {
    outFmt = format::nChw8c;
  } else if (hasnc) {
    CHECK(oh_ == 1 && ow_ == 1);
    outFmt = format::nc;
  } else {
    outFmt = format::nchw;
  }
  memory::dims outDims =
      hasnc ? memory::dims{bs_, oc_} : memory::dims{bs_, oc_, oh_, ow_};
  auto outPD = MKLDNNMatrix::createPrimitiveDesc(outDims, outFmt, engine_);
  resetOutValue(out, outPD);
}

void MKLDNNConcatLayer::resetFwdPD(std::shared_ptr<concat::primitive_desc>& pd,
                                   std::vector<MKLDNNMatrixPtr>& inputs,
                                   MKLDNNMatrixPtr out) {
  std::vector<memory::primitive_desc> srcPDs;
  for (size_t i = 0; i < inputs.size(); i++) {
    srcPDs.push_back(inputs[i]->getPrimitiveDesc());
  }
  CHECK(out);
  pd.reset(new concat::primitive_desc(out->getMemoryDesc(), axis_, srcPDs));
  CHECK_PRIMITIVE_DESC_EQ(out, pd->dst_primitive_desc());
}

void MKLDNNConcatLayer::resetFwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<concat::primitive_desc>& pd,
    std::vector<MKLDNNMatrixPtr>& inputs,
    MKLDNNMatrixPtr& out) {
  std::vector<primitive::at> srcs;
  for (size_t i = 0; i < inputs.size(); i++) {
    srcs.push_back(*(inputs[i]));
  }
  fwd_.reset(new concat(*pd, srcs, *out));
  pipeline.push_back(*fwd_);
}

void MKLDNNConcatLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
                                        MKLDNNMatrixPtr& out) {
  CHECK(outVal_);
  resetOutGrad(out, outVal_->getPrimitiveDesc());
  CHECK(out);

  inputs.resize(inputLayers_.size());
  for (size_t i = 0; i < inputs.size(); i++) {
    CHECK(inVals_[i]);
    resetInGrad(inputs[i], inVals_[i]->getPrimitiveDesc(), i);
    CHECK_PRIMITIVE_DESC_EQ(inputs[i], inVals_[i]->getPrimitiveDesc());
  }
}

void MKLDNNConcatLayer::resetBwdPipeline(
    std::vector<mkldnn::primitive>& pipeline,
    std::vector<std::shared_ptr<mkldnn::primitive>>& prims,
    std::vector<MKLDNNMatrixPtr>& inputs,
    MKLDNNMatrixPtr& out) {
  // reset the backward primitives
  memory::dims offsets = {0, 0, 0, 0};
  prims.resize(inputs.size());
  CHECK_EQ(inputs.size(), channels_.size());
  for (size_t i = 0; i < inputs.size(); i++) {
    auto viewPD = view::primitive_desc(
        out->getPrimitiveDesc(), inputs[i]->getDims(), offsets);
    auto bwdPD = reorder::primitive_desc(viewPD.dst_primitive_desc(),
                                         inputs[i]->getPrimitiveDesc());
    prims[i].reset(new reorder(bwdPD, *out, *(inputs[i])));
    offsets[axis_] += channels_[i];
    // push to pipeline
    pipeline.push_back(*prims[i]);
  }
}

}  // namespace paddle