layer.cc 7.7 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
X
Xin Pan 已提交
16 17 18 19 20 21 22 23 24
#include <deque>
#include <limits>
#include <map>
#include <random>
#include <utility>

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/string/printf.h"
X
Xin Pan 已提交
25 26

namespace paddle {
X
Xin Pan 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
namespace imperative {

using framework::Variable;

void AddTo(Variable* src, Variable* dst) {
  framework::LoDTensor* dst_tensor = dst->GetMutable<framework::LoDTensor>();
  framework::LoDTensor* src_tensor = src->GetMutable<framework::LoDTensor>();
  PADDLE_ENFORCE(dst_tensor->numel() == src_tensor->numel(), "%lld vs %lld",
                 dst_tensor->numel(), src_tensor->numel());
  float* dst_data = dst_tensor->mutable_data<float>(platform::CPUPlace());
  const float* src_data = src_tensor->data<float>();
  for (size_t i = 0; i < src_tensor->numel(); ++i) {
    dst_data[i] += src_data[i];
  }
}

class Autograd {
 public:
  explicit Autograd(framework::Scope* scope) : scope_(scope) {}

X
polish  
Xin Pan 已提交
47
  void RunBackward(VarBase* var) {
X
Xin Pan 已提交
48
    PADDLE_ENFORCE(var->pre_op_->op_desc_);
49 50
    // TODO(panyx0718): Only create for vars that "require_grad"
    (*var->pre_op_->output_vars_)[var->pre_op_out_idx_]->grads_ = var->grads_;
X
Xin Pan 已提交
51

52 53
    std::deque<OpBase*> ready;
    ready.push_back(var->pre_op_);
X
Xin Pan 已提交
54 55 56 57

    std::map<OpBase*, int> dep_counts = ComputeDepCounts(var->pre_op_);

    while (!ready.empty()) {
58
      OpBase* ready_op = ready.front();
X
Xin Pan 已提交
59 60 61 62 63 64 65 66 67 68 69 70
      ready.pop_front();
      std::vector<Variable*> input_grads = ready_op->ApplyGrad(scope_);

      for (size_t i = 0; i < input_grads.size(); ++i) {
        if (!input_grads[i]) continue;
        OpBase* pre_op = ready_op->pre_ops_->at(i);
        if (!pre_op) continue;

        dep_counts[pre_op] -= 1;
        PADDLE_ENFORCE(dep_counts[pre_op] >= 0);
        bool pre_op_ready = dep_counts[pre_op] == 0;
        if (pre_op_ready) {
71
          ready.push_back(pre_op);
X
Xin Pan 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        }
      }
    }
  }

 private:
  void AccumGrads(int grad_idx, Variable* grad,
                  std::vector<Variable*>* op_grads) {
    if (!(*op_grads)[grad_idx]) {
      // FIXME(panyx0718): This should be a deep copy.
      (*op_grads)[grad_idx] = grad;
      return;
    }
    AddTo(grad, (*op_grads)[grad_idx]);
  }

  std::map<OpBase*, int> ComputeDepCounts(OpBase* op) {
    std::map<OpBase*, int> ret;

    std::deque<OpBase*> queue;
    queue.push_back(op);
    std::unordered_set<OpBase*> visited;
    visited.insert(op);
    while (!queue.empty()) {
      OpBase* candidate = queue.front();
      queue.pop_front();
      for (OpBase* pre_op : *(candidate->pre_ops_)) {
        if (!pre_op) continue;
        if (visited.find(pre_op) == visited.end()) {
          visited.insert(pre_op);
          queue.push_back(pre_op);
        }
        ret[pre_op] += 1;
      }
    }

    return ret;
  }

  std::vector<Variable*> CreateOpGrads(size_t count) {
    std::vector<Variable*> op_grads;
    for (size_t i = 0; i < count; ++i) {
      op_grads.push_back(nullptr);
    }
    return op_grads;
  }

  framework::Scope* scope_;
};

framework::Variable* CreateVariable(const std::string& name,
                                    const framework::DDim& dim, float val,
                                    framework::Scope* scope,
                                    bool random_name = true) {
  std::string varname = name;
  if (random_name) {
    std::mt19937 rng;
    rng.seed(std::random_device()());
    std::uniform_int_distribution<std::mt19937::result_type> dist6(
        1, std::numeric_limits<int>::max());
    int id = dist6(rng);
    varname = string::Sprintf("%s@%d", varname, id);
  }

  LOG(ERROR) << "creating var " << varname;
  framework::Variable* var = scope->Var(varname);
  framework::LoDTensor* tensor = var->GetMutable<framework::LoDTensor>();

  float* data = tensor->mutable_data<float>(dim, platform::CPUPlace());
  std::fill(data, data + tensor->numel(), val);
  return var;
}

framework::LoDTensor& VarBase::Grad() {
  VLOG(3) << "get var grad " << var_desc_->Name();
  return *grads_->GetMutable<framework::LoDTensor>();
}

void VarBase::ApplyGrad(framework::Scope* scope, Variable* grad) {
  VLOG(3) << "apply var grad " << var_desc_->Name() << " "
          << grad->Get<framework::LoDTensor>().data<float>()[0];
  if (!grads_) {
    grads_ =
        CreateVariable(string::Sprintf("%s@IGrad", var_desc_->Name()),
                       var_->Get<framework::LoDTensor>().dims(), 0.0, scope);
  }
  AddTo(grad, grads_);
  VLOG(3) << "grad_ after apply var grad " << var_desc_->Name() << " "
          << grads_->Get<framework::LoDTensor>().data<float>()[0];
}

std::vector<Variable*> OpBase::ApplyGrad(framework::Scope* scope) {
  VLOG(3) << "op grad " << grad_op_desc_->Type();

166 167 168 169 170 171 172 173 174 175 176 177
  for (const std::string& grad_invar : grad_op_desc_->InputArgumentNames()) {
    if (grad_to_var_->find(grad_invar) == grad_to_var_->end()) {
      continue;
    }
    LOG(ERROR) << "op grad in var " << grad_invar;
    block_->FindRecursiveOrCreateVar(grad_invar);
    framework::Variable* var = scope->Var(grad_invar);
    const std::string& invar = grad_to_var_->at(grad_invar);
    for (VarBase* varbase : *output_vars_) {
      if (varbase->var_desc_->Name() == invar) {
        var->GetMutable<framework::LoDTensor>()->ShareDataWith(
            varbase->grads_->Get<framework::LoDTensor>());
X
Xin Pan 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
      }
    }
  }

  for (const std::string& outvar : grad_op_desc_->OutputArgumentNames()) {
    LOG(ERROR) << "grad outvar " << outvar;
    block_->FindRecursiveOrCreateVar(outvar);
    framework::Variable* var = scope->Var(outvar);
    if (!var->IsInitialized()) {
      framework::VarDesc* var_desc = block_->FindVar(outvar);
      if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
        var->GetMutable<framework::LoDTensor>();
      } else {
        LOG(ERROR) << "tracer doesn't support yet";
      }
    }
  }
  grad_op_desc_->InferShape(*block_);
  grad_op_desc_->InferVarType(block_);
  std::unique_ptr<framework::OperatorBase> opbase =
      framework::OpRegistry::CreateOp(*grad_op_desc_);

  opbase->Run(*scope, platform::CPUPlace());

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
  std::vector<Variable*> ret;
  for (size_t i = 0; i < input_vars_->size(); ++i) {
    bool found = false;
    for (const std::string& outvar : grad_op_desc_->OutputArgumentNames()) {
      Variable* var = scope->FindVar(outvar);
      VarBase* origin_var = (*input_vars_)[i];
      std::string orig_var = grad_to_var_->at(outvar);
      PADDLE_ENFORCE(origin_var->var_desc_->Name() == orig_var);
      LOG(ERROR) << "apply grad " << outvar << " with origin " << orig_var;
      origin_var->ApplyGrad(scope, var);
      found = true;
      ret.push_back(var);
      // TODO(panyx0718): There might be another outvar with the same name.
      // In that case, it doesn't matter the first one or the second one is
      // used.
      break;
    }
    if (!found) {
      ret.push_back(nullptr);
X
Xin Pan 已提交
221 222 223 224 225 226
    }
  }
  return ret;
}

void VarBase::RunBackward(framework::Scope* scope) {
X
polish  
Xin Pan 已提交
227
  grads_ = CreateVariable(framework::GradVarName(var_desc_->Name()),
X
Xin Pan 已提交
228 229
                          var_->Get<framework::LoDTensor>().dims(), 1.0, scope,
                          false);
X
polish  
Xin Pan 已提交
230 231
  if (!pre_op_) return;
  Autograd(scope).RunBackward(this);
X
Xin Pan 已提交
232 233 234
}

}  // namespace imperative
X
Xin Pan 已提交
235
}  // namespace paddle