compiler.py 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import multiprocessing
import os
import six
X
polish  
Xin Pan 已提交
18
import sys
19 20 21 22 23 24 25 26 27 28 29 30 31 32
from .. import compat as cpt

from . import core

ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
BuildStrategy = core.ParallelExecutor.BuildStrategy


def _place_obj(place):
    p = core.Place()
    p.set_place(place)
    return p


X
polish  
Xin Pan 已提交
33
class CompiledProgram(object):
34 35
    def __init__(self, program):
        self._program = program
X
polish  
Xin Pan 已提交
36 37 38
        self._scope = None
        self._place = None
        self._executor = None
39 40 41 42 43 44
        self._compiled = False
        self._is_data_parallel = False

    def _with_data_parallel(self,
                            loss_name=None,
                            build_strategy=None,
X
polish  
Xin Pan 已提交
45 46
                            exec_strategy=None,
                            share_vars_from=None):
47 48 49 50 51
        assert not self._is_data_parallel, "Already compiled with parallel."
        self._is_data_parallel = True
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy
        self._loss_name = loss_name
X
polish  
Xin Pan 已提交
52
        self._share_vars_from = share_vars_from
53 54
        return self

X
polish  
Xin Pan 已提交
55 56 57 58 59 60
    def _with_distributed(self):
        raise NotImplementedError()

    def _with_inference_optimize(self):
        raise NotImplementedError()

61
    def _compile_data_parallel(self):
X
polish  
Xin Pan 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74
        if self._share_vars_from:
            if self._scope:
                sys.stderr.write("share_vars_from is set, scope is ignored.\n")
            if not self._share_vars_from._is_data_parallel:
                raise ValueError("share_vars_from is not data parallel. Cannot "
                                 "share vars from it.")
            if self._share_vars_from._executor is None:
                raise ValueError(
                    "share_vars_from is not compiled and run, so there is no "
                    "var to share.")
            self._local_scopes = self._share_vars_from._executor.local_scopes()
        else:
            self._local_scopes = []
75

X
polish  
Xin Pan 已提交
76
        self._places = []
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        if self._exec_strategy is None:
            self._exec_strategy = ExecutionStrategy()
        if self._build_strategy is None:
            self._build_strategy = BuildStrategy()

        self._exec_strategy.use_cuda = isinstance(self._place, core.CUDAPlace)
        if self._exec_strategy.use_cuda:
            gpus_env = os.getenv("FLAGS_selected_gpus")
            if gpus_env:
                gpus = [int(s) for s in gpus_env.split(",")]
            else:
                gpus = [
                    i for i in six.moves.range(core.get_cuda_device_count())
                ]
            self._places = [core.CUDAPlace(i) for i in gpus]
        else:
            cpu_num = int(
                os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            self._places = [core.CPUPlace() for _ in six.moves.range(cpu_num)]
        assert self._places, "no place for execution"

        if self._exec_strategy.num_threads == 0:
            if self._exec_strategy.use_cuda:
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
                self._exec_strategy.num_threads = len(self._places) * 4
            else:
                cpu_num = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
                self._exec_strategy.num_threads = cpu_num * 2

        trainers_endpoints = self._program._trainers_endpoints
        if self._build_strategy.num_trainers > 1 and trainers_endpoints:
            assert self._build_strategy.num_trainers == len(
                trainers_endpoints), "num_trainers == len(end_points)"
            self._build_strategy.trainers_endpoints = trainers_endpoints

        self._persistable_vars = set([
            cpt.to_text(v.name)
            for v in [
                var for var in self._program.list_vars()
                if var.persistable and var.type != core.VarDesc.VarType.RAW
            ]
        ])

        places = list(map(_place_obj, self._places))
        return core.ParallelExecutor(
            places, self._persistable_vars, self._program.desc,
            cpt.to_text(self._loss_name)
            if self._loss_name else six.u(''), self._scope, self._local_scopes,
            self._exec_strategy, self._build_strategy)

    def _compile(self, scope, place):
        if self._compiled:
X
polish  
Xin Pan 已提交
131 132 133 134
            if scope and self._scope != scope:
                raise ValueError("Cannot compile with different scope")
            if place and self._place != place:
                raise ValueError("Cannot compile with different place")
135 136 137 138 139 140 141 142 143 144
            return self

        self._scope = scope
        self._place = place
        if self._is_data_parallel:
            self._executor = self._compile_data_parallel()
        else:
            p = _place_obj(self._place)
            self._executor = core.Executor(p)
        return self