README.md 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# 人脸检测模型

## 简介
`face_detection`中提供高效、高速的人脸检测解决方案,包括最先进的模型和经典模型。

![](../../docs/images/12_Group_Group_12_Group_Group_12_935.jpg)

## 模型库

#### WIDER-FACE数据集上的mAP

| 网络结构 | 输入尺寸 | 图片个数/GPU | 学习率策略 | Easy/Medium/Hard Set  | 预测时延(SD855)| 模型大小(MB) | 下载 | 配置文件 |
|:------------:|:--------:|:----:|:-------:|:-------:|:---------:|:----------:|:---------:|:--------:|
14 15
| BlazeFace  | 640  |    8    | 1000e     | 0.885 / 0.855 / 0.731 | - | 0.472 |[下载链接](https://paddledet.bj.bcebos.com/models/blazeface_1000e.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/develop/configs/face_detection/blazeface_1000e.yml) |
| BlazeFace-FPN-SSH  | 640  |    8    | 1000e     | 0.907 / 0.883 / 0.793 | - | 0.479 |[下载链接](https://paddledet.bj.bcebos.com/models/blazeface_fpn_ssh_1000e.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/develop/configs/face_detection/blazeface_fpn_ssh_1000e.yml) |
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

**注意:**  
- 我们使用多尺度评估策略得到`Easy/Medium/Hard Set`里的mAP。具体细节请参考[在WIDER-FACE数据集上评估](#在WIDER-FACE数据集上评估)

## 快速开始

### 数据准备
我们使用[WIDER-FACE数据集](http://shuoyang1213.me/WIDERFACE/)进行训练和模型测试,官方网站提供了详细的数据介绍。
- WIDER-Face数据源:  
使用如下目录结构加载`wider_face`类型的数据集:

  ```
  dataset/wider_face/
  ├── wider_face_split
  │   ├── wider_face_train_bbx_gt.txt
  │   ├── wider_face_val_bbx_gt.txt
  ├── WIDER_train
  │   ├── images
  │   │   ├── 0--Parade
  │   │   │   ├── 0_Parade_marchingband_1_100.jpg
  │   │   │   ├── 0_Parade_marchingband_1_381.jpg
  │   │   │   │   ...
  │   │   ├── 10--People_Marching
  │   │   │   ...
  ├── WIDER_val
  │   ├── images
  │   │   ├── 0--Parade
  │   │   │   ├── 0_Parade_marchingband_1_1004.jpg
  │   │   │   ├── 0_Parade_marchingband_1_1045.jpg
  │   │   │   │   ...
  │   │   ├── 10--People_Marching
  │   │   │   ...
  ```

- 手动下载数据集:
要下载WIDER-FACE数据集,请运行以下命令:
```
cd dataset/wider_face && ./download_wider_face.sh
```

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
### 参数配置
基础模型的配置可以参考`configs/face_detection/_base_/blazeface.yml`
改进模型增加FPN和SSH的neck结构,配置文件可以参考`configs/face_detection/_base_/blazeface_fpn.yml`,可以根据需求配置FPN和SSH,具体如下:
```yaml
BlazeNet:
   blaze_filters: [[24, 24], [24, 24], [24, 48, 2], [48, 48], [48, 48]]
   double_blaze_filters: [[48, 24, 96, 2], [96, 24, 96], [96, 24, 96],
                           [96, 24, 96, 2], [96, 24, 96], [96, 24, 96]]
   act: hard_swish #配置backbone中BlazeBlock的激活函数,基础模型为relu,增加FPN和SSH时需使用hard_swish

BlazeNeck:
   neck_type : fpn_ssh #可选only_fpn、only_ssh和fpn_ssh
   in_channel: [96,96]
```



73 74
### 训练与评估
训练流程与评估流程方法与其他算法一致,请参考[GETTING_STARTED_cn.md](../../docs/tutorials/GETTING_STARTED_cn.md)
75
**注意:** 人脸检测模型目前不支持边训练边评估。
76 77

#### 在WIDER-FACE数据集上评估
78
- 步骤一:评估并生成结果文件:
79 80 81 82 83 84 85
```shell
python -u tools/eval.py -c configs/face_detection/blazeface_1000e.yml \
       -o weights=output/blazeface_1000e/model_final \
       multi_scale=True
```
设置`multi_scale=True`进行多尺度评估,评估完成后,将在`output/pred`中生成txt格式的测试结果。

86
- 步骤二:下载官方评估脚本和Ground Truth文件:
87 88 89 90
```
wget http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/support/eval_script/eval_tools.zip
unzip eval_tools.zip && rm -f eval_tools.zip
```
91 92 93 94

- 步骤三:开始评估

方法一:python评估:
95
```
96 97 98 99 100 101
git clone https://github.com/wondervictor/WiderFace-Evaluation.git
cd WiderFace-Evaluation
# 编译
python3 setup.py build_ext --inplace
# 开始评估
python3 evaluation.py -p /path/to/PaddleDetection/output/pred -g /path/to/eval_tools/ground_truth
102
```
103 104

方法二:MatLab评估:
105
```
106 107 108 109 110
# 在`eval_tools/wider_eval.m`中修改保存结果路径和绘制曲线的名称:
pred_dir = './pred';  
legend_name = 'Paddle-BlazeFace';

`wider_eval.m` 是评估模块的主要执行程序。运行命令如下:
111 112 113 114 115 116 117 118 119 120 121 122 123 124
matlab -nodesktop -nosplash -nojvm -r "run wider_eval.m;quit;"
```


## Citations

```
@article{bazarevsky2019blazeface,
      title={BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs},
      author={Valentin Bazarevsky and Yury Kartynnik and Andrey Vakunov and Karthik Raveendran and Matthias Grundmann},
      year={2019},
      eprint={1907.05047},
      archivePrefix={arXiv},
```