executor.cc 18.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
Y
Yang Yang 已提交
16

Y
Yi Wang 已提交
17 18 19
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
B
baojun-nervana 已提交
20
#include "paddle/fluid/framework/ngraph_operator.h"
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
23
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
24
#include "paddle/fluid/framework/variable_helper.h"
G
gongweibao 已提交
25
#include "paddle/fluid/operators/detail/macros.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
27
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
28

D
dzhwinter 已提交
29
DECLARE_bool(benchmark);
30
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
B
baojun-nervana 已提交
31
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
Q
qijun 已提交
32 33 34

namespace paddle {
namespace framework {
X
Xin Pan 已提交
35 36 37 38 39
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
40

S
fix bug  
sneaxiy 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
static std::unordered_map<std::string, size_t> GetNonPersistableReferenceCounts(
    const BlockDesc& block, const std::vector<std::string>& skip_var_list) {
  std::unordered_map<std::string, size_t> ref_cnts;
  std::unordered_set<std::string> skip_vars(skip_var_list.begin(),
                                            skip_var_list.end());

  auto update_ref_cnts = [&](OpDesc* op_desc, const VariableNameMap& name_map) {
    for (auto& name_pair : name_map) {
      for (auto& name : name_pair.second) {
        if (skip_vars.count(name)) continue;
        auto* var_desc = block.FindVar(name);
        if (var_desc == nullptr || var_desc->Persistable()) continue;
        auto type = var_desc->Proto()->type().type();
        if (type != proto::VarType::LOD_TENSOR &&
            type != proto::VarType::SELECTED_ROWS &&
            type != proto::VarType::LOD_TENSOR_ARRAY) {
          continue;
        }
S
sneaxiy 已提交
59
        ++ref_cnts[name];
S
fix bug  
sneaxiy 已提交
60 61 62 63 64 65 66 67 68 69 70
      }
    }
  };

  for (auto op_desc : block.AllOps()) {
    update_ref_cnts(op_desc, op_desc->Inputs());
    update_ref_cnts(op_desc, op_desc->Outputs());
  }
  return ref_cnts;
}

Q
Qiao Longfei 已提交
71
ExecutorPrepareContext::ExecutorPrepareContext(
S
fix bug  
sneaxiy 已提交
72 73
    const framework::ProgramDesc& prog, size_t block_id,
    const std::vector<std::string>& skip_ref_cnt_vars)
S
sneaxiy 已提交
74 75
    : prog_(prog), block_id_(block_id) {
  if (GetEagerDeletionThreshold() >= 0) {
S
sneaxiy 已提交
76 77
    global_ref_cnts_ = GetNonPersistableReferenceCounts(prog.Block(block_id),
                                                        skip_ref_cnt_vars);
S
sneaxiy 已提交
78 79
  }
}
Y
Yu Yang 已提交
80

Q
Qiao Longfei 已提交
81
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
82
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
83
}
Y
Yu Yang 已提交
84

S
fix bug  
sneaxiy 已提交
85 86 87
static void DeleteUnusedTensors(
    const Scope& scope, const OperatorBase* op, GarbageCollector<Tensor>* gc,
    std::unordered_map<std::string, size_t>* ref_cnts) {
S
sneaxiy 已提交
88 89 90 91 92 93 94
  std::unordered_set<Tensor*> erase_tensors;

  auto handler = [&](const VariableNameMap& name_map) {
    for (auto& name_pair : name_map) {
      for (auto& name : name_pair.second) {
        auto it = ref_cnts->find(name);
        if (it == ref_cnts->end()) continue;
S
fix bug  
sneaxiy 已提交
95
        if (--(it->second) == 0) {
S
sneaxiy 已提交
96 97
          auto* var = scope.FindVar(name);
          if (var != nullptr) {
S
sneaxiy 已提交
98
            VLOG(2) << "Erase tensor \'" << name << "\'";
S
sneaxiy 已提交
99 100 101 102 103
            if (var->IsType<LoDTensor>()) {
              erase_tensors.insert(var->GetMutable<LoDTensor>());
            } else if (var->IsType<SelectedRows>()) {
              erase_tensors.insert(
                  var->GetMutable<SelectedRows>()->mutable_value());
S
fix bug  
sneaxiy 已提交
104 105 106 107 108
            } else if (var->IsType<LoDTensorArray>()) {
              auto* lod_tensor_arr = var->GetMutable<LoDTensorArray>();
              for (auto& t : *lod_tensor_arr) {
                erase_tensors.insert(&t);
              }
S
sneaxiy 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
            }
          }
        }
      }
    }
  };

  handler(op->Inputs());
  handler(op->Outputs());

  if (!erase_tensors.empty()) {
    gc->Add(erase_tensors);
  }
}

B
baojun-nervana 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
static void EnableFusedOp(ExecutorPrepareContext* ctx) {
#ifdef PADDLE_WITH_NGRAPH
  VLOG(3) << "use_ngraph=True";
  auto intervals = FusedOperator::FusedOpIntervals(&ctx->ops_);
  for (auto& interval : intervals) {
    auto* fused_op = new FusedOperator(ctx->prog_, ctx->block_id_,
                                       interval.at(0), interval.at(1));
    *interval[0] = std::unique_ptr<OperatorBase>(fused_op);
  }
  for (auto it = intervals.rbegin(); it != intervals.rend(); ++it) {
    ctx->ops_.erase(it->at(0) + 1, it->at(1));
  }
#else
  LOG(WARNING)
      << "'NGRAPH' is not supported, Please re-compile with WITH_NGRAPH option";
#endif
}

D
dzhwinter 已提交
142
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
143

Y
Yancey1989 已提交
144
void Executor::Close() {
W
Wu Yi 已提交
145
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
146 147
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
Y
Yancey1989 已提交
148
  ::paddle::operators::distributed::RPCClient::GetInstance<
W
Wu Yi 已提交
149
      ::paddle::operators::distributed::GRPCClient>(0)
Y
Yancey1989 已提交
150
      ->SendComplete();
W
Wu Yi 已提交
151
#endif
Y
Yancey1989 已提交
152
}
W
Wu Yi 已提交
153

L
Liu Yiqun 已提交
154 155 156
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
157 158 159 160 161 162 163 164 165 166 167 168 169 170

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
171
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
172 173
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
174 175
      } else {
        auto* ptr = scope->Var(var->Name());
176
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
177 178
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
179 180 181 182 183
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
184
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
185 186
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
187 188 189 190
    }
  }
}

Y
Yu Yang 已提交
191
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
T
typhoonzero 已提交
192
                   bool create_local_scope, bool create_vars) {
X
Xin Pan 已提交
193
  platform::RecordBlock b(block_id);
194
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
Q
Qiao Longfei 已提交
195 196
  auto ctx = Prepare(pdesc, block_id);
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
197 198
}

199 200 201 202 203 204 205
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
206
    const BlockDesc& block,
L
Liu Yiqun 已提交
207
    const std::map<std::string, const LoDTensor*>& feed_targets,
208 209
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
210
  for (auto* op : block.AllOps()) {
211 212
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
213
      // The input variable's name of feed_op should be feed_holder_name.
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

229
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
230
      // When feed operator are present, so should be feed_holder.
231 232 233 234 235 236 237
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
238 239 240 241 242 243 244 245 246 247 248 249
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
250 251
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
252 253
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
254
  for (auto* op : block.AllOps()) {
255 256
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
257
      // The output variable's name of fetch_op should be fetch_holder_name.
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

273
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
274
      // When fetch operator are present, so should be fetch_holder.
275 276 277 278 279 280 281
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
282 283 284 285 286 287
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
288 289
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
290 291
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
292
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
293
  platform::RecordBlock b(kProgramId);
294
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
295
  bool has_feed_ops =
296
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
297
  bool has_fetch_ops =
298
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
299 300

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
301
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
302
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
303 304
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
305
  }
306 307
  auto* global_block = copy_program->MutableBlock(0);

308
  if (!has_feed_ops) {
309 310
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
311
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
312 313 314
    feed_holder->SetPersistable(true);

    int i = 0;
315
    for (auto& feed_target : (*feed_targets)) {
316
      std::string var_name = feed_target.first;
M
minqiyang 已提交
317
      VLOG(3) << "feed target's name: " << var_name;
318 319 320 321 322 323 324 325 326 327 328 329 330

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

331
  if (!has_fetch_ops) {
332 333
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
334
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
335 336 337
    fetch_holder->SetPersistable(true);

    int i = 0;
338
    for (auto& fetch_target : (*fetch_targets)) {
339
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
340
      VLOG(3) << "fetch target's name: " << var_name;
341 342 343 344 345 346 347 348 349 350 351 352 353

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

354
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
355 356 357
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
358 359
}

Q
Qiao Longfei 已提交
360
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
361 362
    const ProgramDesc& program, int block_id,
    const std::vector<std::string>& skip_ref_cnt_vars) {
Q
Qiyang Min 已提交
363
  std::unique_ptr<ExecutorPrepareContext> ctx(
S
fix bug  
sneaxiy 已提交
364
      new ExecutorPrepareContext(program, block_id, skip_ref_cnt_vars));
Y
Yu Yang 已提交
365 366 367 368 369
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
B
baojun-nervana 已提交
370
  if (FLAGS_use_ngraph) EnableFusedOp(ctx.get());
Q
Qiyang Min 已提交
371
  return ctx;
Y
Yu Yang 已提交
372 373
}

T
refine  
typhoonzero 已提交
374
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
375 376 377 378 379 380
    const ProgramDesc& program, const std::vector<int>& block_ids,
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars) {
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
381
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
382
  size_t idx = 0;
T
typhoonzero 已提交
383
  for (auto& bid : block_ids) {
S
fix bug  
sneaxiy 已提交
384 385 386 387 388 389
    ExecutorPrepareContext* ctx;
    if (skip_ref_cnt_vars.empty()) {
      ctx = new ExecutorPrepareContext(program, bid);
    } else {
      ctx = new ExecutorPrepareContext(program, bid, skip_ref_cnt_vars[idx]);
    }
T
typhoonzero 已提交
390 391 392 393 394 395
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
396
    ++idx;
T
typhoonzero 已提交
397 398 399 400
  }
  return result;
}

Y
Yu Yang 已提交
401
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
402 403
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
404
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
405 406 407 408
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
409 410
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
411
  }
Y
Yu Yang 已提交
412

S
sneaxiy 已提交
413 414
  int64_t max_memory_size = GetEagerDeletionThreshold();
  std::unique_ptr<GarbageCollector<Tensor>> gc;
S
fix bug  
sneaxiy 已提交
415
  if (max_memory_size >= 0) {
S
sneaxiy 已提交
416
    ctx->ResetReferenceCount();
S
sneaxiy 已提交
417 418
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
419 420 421 422 423 424 425 426
      if (IsFastEagerDeletionModeEnabled()) {
        gc.reset(new UnsafeFastGPUGarbageCollector<Tensor>(
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
        gc.reset(new DefaultStreamGarbageCollector<Tensor>(
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
427 428 429 430 431 432 433 434
#endif
      gc.reset(new CPUGarbageCollector<Tensor>(
          boost::get<platform::CPUPlace>(place_), max_memory_size));
#ifdef PADDLE_WITH_CUDA
    }
#endif
  }

Y
Yu Yang 已提交
435
  for (auto& op : ctx->ops_) {
436
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
437

S
fix bug  
sneaxiy 已提交
438
    if (gc) {
S
sneaxiy 已提交
439
      DeleteUnusedTensors(*local_scope, op.get(), gc.get(),
S
sneaxiy 已提交
440
                          &(ctx->runtime_ref_cnts_));
S
sneaxiy 已提交
441
    }
Y
Yu Yang 已提交
442
  }
S
sneaxiy 已提交
443

S
fix bug  
sneaxiy 已提交
444 445
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
  if (gc) gc->Wait();
S
sneaxiy 已提交
446

Q
qiaolongfei 已提交
447
  if (local_scope != scope) {
Y
Yu Yang 已提交
448
    scope->DeleteScope(local_scope);
449
  } else {
Q
qiaolongfei 已提交
450 451 452 453 454
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
455 456
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
457 458
      scope->DropKids();
    }
Y
Yu Yang 已提交
459 460 461
  }
}

462 463
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
464
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
465 466 467
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
468 469
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

470
  PADDLE_ENFORCE(
471
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
472 473
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
474
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
475 476
      "Program in the prepared context should has fetch_ops.");

477 478 479 480 481
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
482 483
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
484 485 486
    }
  }

W
Wu Yi 已提交
487
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
488 489 490 491 492 493

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
494
      *(*fetch_targets)[fetch_target_name] =
495 496 497 498 499
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

500 501
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
502
  VLOG(3) << "use_mkldnn=True";
503 504 505 506 507 508 509 510
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
511 512 513
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
514 515
#endif
}
Q
qijun 已提交
516 517
}  // namespace framework
}  // namespace paddle