backward.cc 19.8 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/framework/backward.h"
Y
Yu Yang 已提交
16
#include "paddle/operators/net_op.h"
D
dongzhihong 已提交
17

F
fengjiayi 已提交
18
#include <deque>
D
dongzhihong 已提交
19
#include <list>
Y
Yu Yang 已提交
20 21
#include <memory>

F
fengjiayi 已提交
22
#include "paddle/framework/block_desc.h"
23
#include "paddle/framework/op_registry.h"
24
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
25
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
26
#include "paddle/operators/recurrent_op.h"
Y
Yu Yang 已提交
27 28 29 30

namespace paddle {
namespace framework {

Y
Yu Yang 已提交
31
static inline std::unique_ptr<OperatorBase> CreateGradOp(
32 33
    const OperatorBase& op, const std::unordered_set<std::string>& no_grad_set,
    std::unordered_map<std::string, std::string>* grad_to_var) {
Y
Yu Yang 已提交
34 35 36 37 38 39
  OpDescBind op_desc;
  op_desc.SetInputMap(op.Inputs());
  op_desc.SetOutputMap(op.Outputs());
  op_desc.SetType(op.Type());
  op_desc.SetAttrMap(op.Attrs());
  auto& info = OpInfoMap::Instance().Get(op.Type());
40
  auto grad_descs = info.GradOpMaker()(op_desc, no_grad_set, grad_to_var);
Y
Yu Yang 已提交
41 42
  std::vector<std::unique_ptr<OperatorBase>> grad_ops;
  grad_ops.reserve(grad_descs.size());
Y
Yu Yang 已提交
43 44 45
  std::transform(grad_descs.begin(), grad_descs.end(),
                 std::back_inserter(grad_ops),
                 [](const std::unique_ptr<OpDescBind>& grad_desc) {
Y
Yu Yang 已提交
46
                   return OpRegistry::CreateOp(*grad_desc);
Y
Yu Yang 已提交
47
                 });
Y
Yu Yang 已提交
48
  PADDLE_ENFORCE(!grad_ops.empty());
Y
Yu Yang 已提交
49 50 51 52 53 54 55
  if (grad_ops.size() == 1) {
    return std::move(grad_ops[0]);
  } else {
    auto net_op = new operators::NetOp();
    for (auto& grad_op : grad_ops) {
      net_op->AppendOp(std::move(grad_op));
    }
Y
Yu Yang 已提交
56
    net_op->CompleteAddOp();
Y
Yu Yang 已提交
57 58 59 60
    return std::unique_ptr<OperatorBase>(net_op);
  }
}

Y
Yu Yang 已提交
61
template <typename Map, typename T>
Q
qiaolongfei 已提交
62
static void ForEachVarName(const Map& names, T callback) {
Y
Yu Yang 已提交
63
  for (auto& name : names) {
Y
Yu Yang 已提交
64
    for (auto& n : name.second) {
65
      if (callback(n)) return;
Y
Yu Yang 已提交
66 67
    }
  }
Y
Yu Yang 已提交
68 69
}

Y
Yan Chunwei 已提交
70
// return whether all the names + suffixes in the set
Y
Yu Yang 已提交
71
static bool AllInSet(
Y
Yu Yang 已提交
72
    const std::map<std::string, std::vector<std::string>>& names,
Y
Yu Yang 已提交
73
    const std::string& suffix, const std::unordered_set<std::string>& set) {
74 75 76 77
  bool all_in_set = true;
  ForEachVarName(names, [&all_in_set, &set, &suffix](const std::string& n) {
    all_in_set = set.find(n + suffix) != set.end();
    return !all_in_set;
Y
Yu Yang 已提交
78
  });
79
  return all_in_set;
Y
Yu Yang 已提交
80 81
}

Y
Yu Yang 已提交
82 83
static std::unique_ptr<OperatorBase> NOP() {
  auto net_op = new operators::NetOp();
Q
qiaolongfei 已提交
84
  net_op->SetType("@NOP@");
Y
Yu Yang 已提交
85
  net_op->CompleteAddOp();
Y
Yu Yang 已提交
86
  return std::unique_ptr<OperatorBase>(net_op);
Y
Yu Yang 已提交
87 88
}

Y
Yan Chunwei 已提交
89
//  Get backward operator from a forward operator, a recursive implementation.
Y
Yu Yang 已提交
90 91 92
//
//  no_grad_names the gradient variable names without gradient calculating.
//
93 94 95
//  uniq_id is a unique index used inside recursively calling
//  BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
//  pass `uniq_id` through recursive calling.
Y
Yu Yang 已提交
96
//
Y
Yan Chunwei 已提交
97 98
//  returns The backward operator. In a simple situation, it may be a simple
//  operator, in a complex situation, it maybe a NetOp.
Y
Yu Yang 已提交
99 100
//
//  See Backward.h for details
Y
Yu Yang 已提交
101
static std::unique_ptr<OperatorBase> BackwardRecursive(
Y
Yu Yang 已提交
102
    const OperatorBase& forwardOp,
103 104 105
    std::unordered_set<std::string>& no_grad_names,
    std::unordered_map<std::string, std::string>* grad_to_var,
    size_t& uniq_id) {
Y
Yu Yang 已提交
106 107
  //  If all input gradients of forwarding operator do not need to calculate,
  //  just return an NOP. Not return null ptr because NOP does not take
Q
typo  
qiaolongfei 已提交
108
  //  too much time for calculation, but it is useful for simplifying logic.
109
  if (AllInSet(forwardOp.Inputs() /*names*/, kGradVarSuffix /*suffix*/,
Y
Yan Chunwei 已提交
110
               no_grad_names /*set*/)) {
Y
Yu Yang 已提交
111
    return NOP();
Y
Yu Yang 已提交
112 113
  }

114 115
  //  All output gradients of forwarding operator do not need to calculate.
  //  Then all input gradients cannot be computed at all, and we put them into
Y
Yu Yang 已提交
116
  //  `no_grad_names` set. Return an NOP.
Q
qiaolongfei 已提交
117
  if (AllInSet(forwardOp.Outputs() /*names*/, kGradVarSuffix /*suffix*/,
Y
Yan Chunwei 已提交
118
               no_grad_names /*set*/)) {
Q
qiaolongfei 已提交
119
    ForEachVarName(forwardOp.Inputs(),
Y
Yu Yang 已提交
120 121 122 123
                   [&no_grad_names](const std::string& name) -> bool {
                     no_grad_names.insert(GradVarName(name));
                     return false;
                   });
Y
Yu Yang 已提交
124
    return NOP();
Y
Yu Yang 已提交
125 126
  }

Y
Yu Yang 已提交
127
  // Returned gradient network
Y
Yu Yang 已提交
128
  auto net = std::unique_ptr<operators::NetOp>(new operators::NetOp());
Y
Yu Yang 已提交
129 130

  if (forwardOp.IsNetOp()) {
Y
Yu Yang 已提交
131
    // Because forwardOp is a net op, it can static_cast.
Y
Yan Chunwei 已提交
132
    auto& forwardNet = static_cast<const operators::NetOp&>(forwardOp);
Y
Yu Yang 已提交
133

134
    // Map from output gradient variable name to operator's indices in
Y
Yan Chunwei 已提交
135
    // backward net's ops_. That operator generates that variable.
Y
Yu Yang 已提交
136 137 138
    std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;

    size_t local_op_id = 0;
Y
Yan Chunwei 已提交
139
    // reversely travel forwardNet and collect all duplicate outputs.
Y
Yu Yang 已提交
140
    for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend();
Y
Yu Yang 已提交
141
         ++it, ++local_op_id) {
Y
Yu Yang 已提交
142
      auto& fwd = *it;
143
      auto bwd = BackwardRecursive(*fwd, no_grad_names, grad_to_var, uniq_id);
Q
qiaolongfei 已提交
144
      ForEachVarName(bwd->Outputs(),
Y
Yu Yang 已提交
145 146 147 148
                     [&dup_output_ops, local_op_id](const std::string& out) {
                       dup_output_ops[out].emplace_back(local_op_id);
                       return false;
                     });
Y
Yu Yang 已提交
149
      net->AppendOp(std::move(bwd));
D
dongzhihong 已提交
150
    }
Y
Yu Yang 已提交
151
    // Get unique ID for this method.
D
dongzhihong 已提交
152
    auto uid = uniq_id++;
D
dongzhihong 已提交
153
    // TODO(dzh): more comment
Y
Yan Chunwei 已提交
154 155 156 157 158
    // multiple operators which have the same output (y for example) may
    // overwrite the same y variable when backward, special operations are token
    // to handle this case. For each duplicate output, rename it to an alias
    // (original name with a offset), append an `add` op for its operator,
    // and finally sum all the alias variable to the final output variable y.
Y
Yu Yang 已提交
159
    using Pos = std::pair<size_t, std::unique_ptr<OperatorBase>>;
Y
Yu Yang 已提交
160
    std::list<Pos> insert_position;
D
dongzhihong 已提交
161
    for (auto& dup_output_op : dup_output_ops) {
D
dongzhihong 已提交
162
      const std::string& name = dup_output_op.first;
Q
qijun 已提交
163 164 165
      // duplicate @Empty@ don't need to be added
      if (name == kEmptyVarName) continue;

D
dongzhihong 已提交
166
      auto& dup_op = dup_output_op.second;
Y
Yan Chunwei 已提交
167
      // no duplicate output
D
dongzhihong 已提交
168 169
      if (dup_op.size() == 1) continue;

Y
Yan Chunwei 已提交
170 171
      // process the duplicate outputs
      std::vector<std::string> dup_outputs;
D
dongzhihong 已提交
172
      for (size_t i = 0; i < dup_op.size(); ++i) {
Y
Yan Chunwei 已提交
173
        // rename each duplicate output to an alias
D
dongzhihong 已提交
174
        auto op_offset = dup_op[i];
D
dongzhihong 已提交
175 176 177
        dup_outputs.push_back(name + "@RENAME@" + std::to_string(uid) + "@" +
                              std::to_string(i));
        net->ops_[op_offset]->Rename(name, dup_outputs.back());
D
dongzhihong 已提交
178
      }
179 180 181 182 183
      // collect all the offset for each alias,
      // insert a sum operator to add all aliases to output
      insert_position.push_back(
          {dup_op.back(), OpRegistry::CreateOp("sum", {{"X", dup_outputs}},
                                               {{"Out", {name}}}, {})});
D
dongzhihong 已提交
184
    }
Y
Yu Yang 已提交
185

186
    // make sure the inserted `sum` ops follow the BFS order.
Y
Yu Yang 已提交
187
    insert_position.sort(
D
dongzhihong 已提交
188
        [](const Pos& l, const Pos& r) { return l.first > r.first; });
Y
Yu Yang 已提交
189 190

    for (auto& pos : insert_position) {
Y
Yu Yang 已提交
191
      net->InsertOp(pos.first + 1, std::move(pos.second));
D
dongzhihong 已提交
192
    }
Y
Yu Yang 已提交
193
  } else {
194
    std::unique_ptr<OperatorBase> grad_op(
195
        CreateGradOp(forwardOp, no_grad_names, grad_to_var));
Y
Yu Yang 已提交
196

Y
Yu Yang 已提交
197 198
    ForEachVarName(grad_op->Inputs(), [&no_grad_names, &net, &grad_op](
                                          const std::string& grad_input) {
199
      if (no_grad_names.count(grad_input)) {
Y
Yu Yang 已提交
200
        // +1 for \0
201
        std::string prefix = grad_input.substr(
Y
Yu Yang 已提交
202
            0, grad_input.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1);
Q
qiaolongfei 已提交
203
        grad_op->Rename(grad_input, prefix + kZeroVarSuffix);
Y
Yu Yang 已提交
204 205 206

        // If part of input gradient of that operator is not calculated, fill
        // zero variables to that input gradient.
D
dangqingqing 已提交
207 208
        net->AppendOp(OpRegistry::CreateOp("fill_zeros_like", {{"X", {prefix}}},
                                           {{"Y", {grad_input}}}, {}));
209
      }
Y
Yu Yang 已提交
210 211 212
      return false;
    });

Q
qiaolongfei 已提交
213 214
    ForEachVarName(grad_op->Outputs(),
                   [&no_grad_names, &grad_op](const std::string& grad_output) {
Y
Yu Yang 已提交
215
                     if (no_grad_names.count(grad_output)) {
Q
qiaolongfei 已提交
216
                       grad_op->Rename(grad_output, kEmptyVarName);
Y
Yu Yang 已提交
217 218 219
                     }
                     return false;
                   });
Y
Yu Yang 已提交
220

Y
Yan Chunwei 已提交
221
    // process recurrent gradient op as a special operator.
222
    if (forwardOp.Type() == "recurrent") {
F
Fix bug  
fengjiayi 已提交
223
      // NOTE clean up cycle call somewhere (RNN's stepnet constains itself),
224
      // or this will result in infinite loop.
Y
Yan Chunwei 已提交
225 226 227 228 229 230 231 232
      const auto& rnnop =
          *static_cast<const operators::RecurrentOp*>(&forwardOp);
      auto rnn_grad_op =
          static_cast<operators::RecurrentGradientOp*>(grad_op.get());
      const auto& stepnet_op =
          *static_cast<const OperatorBase*>(&rnnop.stepnet());
      // create stepnet's gradient op
      rnn_grad_op->set_stepnet(
233
          BackwardRecursive(stepnet_op, no_grad_names, grad_to_var, uniq_id));
234 235 236 237 238 239 240 241 242 243 244 245
    } else if (forwardOp.Type() == "dynamic_recurrent") {
      // NOTE clean up cycle call somewhere (RNN's stepnet constains itself),
      // or this will result in infinite loop.
      const auto& rnnop =
          *static_cast<const operators::DynamicRecurrentOp*>(&forwardOp);
      auto rnn_grad_op =
          static_cast<operators::DynamicRecurrentGradientOp*>(grad_op.get());
      const auto& stepnet_op =
          *static_cast<const OperatorBase*>(&rnnop.rnn.GetStepUnit());
      // create stepnet's gradient op
      rnn_grad_op->rnn.SetStepUnit(
          BackwardRecursive(stepnet_op, no_grad_names, grad_to_var, uniq_id));
Y
Yan Chunwei 已提交
246 247
    }

Y
Yu Yang 已提交
248 249 250
    if (net->ops_.empty()) {  // Current no aux op is added to network
      return grad_op;
    }
Y
Yu Yang 已提交
251
    net->AppendOp(std::move(grad_op));
Y
Yu Yang 已提交
252
  }
Q
qiaolongfei 已提交
253
  net->SetType("@GENERATED_BACKWARD@");
Y
Yu Yang 已提交
254
  net->CompleteAddOp();
Y
Yu Yang 已提交
255 256 257
  return std::unique_ptr<OperatorBase>(
      static_cast<OperatorBase*>(net.release()));
}
Y
Yu Yang 已提交
258

Y
Yu Yang 已提交
259
// See header for comments
Y
Yu Yang 已提交
260
std::unique_ptr<OperatorBase> Backward(
Y
Yu Yang 已提交
261
    const OperatorBase& forwardOp,
Y
Yu Yang 已提交
262 263
    const std::unordered_set<std::string>& no_grad_vars) {
  std::unordered_set<std::string> no_grad_names;
Q
qijun 已提交
264
  no_grad_names.reserve(no_grad_vars.size() + 1);
Y
Yu Yang 已提交
265

266
  no_grad_names.insert(std::string(kEmptyVarName) + kGradVarSuffix);
267

Y
Yu Yang 已提交
268
  for (auto& name : no_grad_vars) {
269
    no_grad_names.insert(name + kGradVarSuffix);
Y
Yu Yang 已提交
270
  }
Y
Yu Yang 已提交
271
  size_t uid = 0;
272 273
  std::unordered_map<std::string, std::string> grad_to_var;
  return BackwardRecursive(forwardOp, no_grad_names, &grad_to_var, uid);
Y
Yu Yang 已提交
274
}
Y
Yi Wang 已提交
275

F
fengjiayi 已提交
276 277 278 279 280 281 282 283 284 285 286 287
// ====================================  //

static bool AllGradInSet(const std::vector<std::string>& names,
                         const std::unordered_set<std::string>& set) {
  for (const std::string& name : names) {
    if (!set.count(GradVarName(name))) {
      return false;
    }
  }
  return true;
}

Y
Yu Yang 已提交
288
static void CreateGradVarInBlock(
289 290 291 292
    size_t grad_op_start_index,
    const std::unordered_map<std::string, std::string>& param_name_map,
    BlockDescBind* block_desc,
    std::unordered_map<std::string, GradVarInfo>* grad_var_record) {
293 294 295
  auto ops = block_desc->AllOps();
  for (size_t op_index = grad_op_start_index; op_index < ops.size();
       ++op_index) {
Q
Qiao Longfei 已提交
296
    bool need_infer_shape = false;
Y
Yu Yang 已提交
297 298 299 300 301
    ForEachVarName(ops[op_index]->Outputs(),
                   [&](const std::string& grad_var_name) {
                     if (block_desc->HasVar(grad_var_name)) {
                       return false;
                     }
Q
Qiao Longfei 已提交
302 303 304 305
                     need_infer_shape = true;
                     auto var = block_desc->Var(grad_var_name);
                     // FIXME(qiao) infer the datatype
                     var->SetDataType(framework::DataType::FP32);
Y
Yu Yang 已提交
306 307 308 309 310 311 312 313 314 315 316
                     auto it = param_name_map.find(grad_var_name);
                     if (it == param_name_map.end()) {
                       return false;
                     }
                     auto param_var_name = it->second;
                     auto& grad_record = (*grad_var_record)[param_var_name];
                     grad_record.name_ = grad_var_name;
                     grad_record.block_idx_ = block_desc->ID();
                     grad_record.op_idx_ = static_cast<int>(op_index);
                     return false; /* not break */
                   });
Q
Qiao Longfei 已提交
317
    if (need_infer_shape) {
Q
QI JUN 已提交
318
      ops[op_index]->InferVarType(block_desc);
Q
Qiao Longfei 已提交
319 320
      ops[op_index]->InferShape(*block_desc);
    }
321 322 323
  }
}

F
fengjiayi 已提交
324
std::vector<std::unique_ptr<OpDescBind>> MakeOpGrad(
325
    const OpDescBind* op_desc, std::unordered_set<std::string>* no_grad_vars,
326
    std::unordered_map<std::string, std::string>* grad_to_var) {
F
Update  
fengjiayi 已提交
327
  std::vector<std::unique_ptr<OpDescBind>> grad_op_descs;
328
  // All input gradients of forwarding operator do not need to calculate.
F
fengjiayi 已提交
329
  const std::vector<std::string>& inputs = op_desc->InputArgumentNames();
330
  if (AllGradInSet(inputs, *no_grad_vars)) {
F
fengjiayi 已提交
331 332 333
    return grad_op_descs;  // empty vector
  }
  // All output gradients of forwarding operator do not need to calculate.
F
fengjiayi 已提交
334
  const std::vector<std::string>& outputs = op_desc->OutputArgumentNames();
335
  if (AllGradInSet(outputs, *no_grad_vars)) {
336
    for (const std::string& name : inputs) {
337
      no_grad_vars->insert(GradVarName(name));
F
fengjiayi 已提交
338 339 340 341
    }
    return grad_op_descs;  // empty vector
  }

342 343
  grad_op_descs = OpInfoMap::Instance()
                      .Get(op_desc->Type())
344
                      .GradOpMaker()(*op_desc, *no_grad_vars, grad_to_var);
F
fengjiayi 已提交
345

F
Update  
fengjiayi 已提交
346 347 348
  std::list<std::unique_ptr<OpDescBind>> pending_fill_zeros_ops;
  for (auto& desc : grad_op_descs) {
    for (const std::string& in_name : desc->InputArgumentNames()) {
349
      if (no_grad_vars->count(in_name)) {
F
fengjiayi 已提交
350 351 352
        std::string prefix = in_name.substr(
            0, in_name.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1);
        std::string new_name = prefix + kZeroVarSuffix;
F
Update  
fengjiayi 已提交
353
        desc->Rename(in_name, new_name);
F
fengjiayi 已提交
354 355 356
        std::unique_ptr<OpDescBind> fill_zeros_op(new OpDescBind(
            "fill_zeros_like", {{"X", {prefix}}}, {{"Y", {new_name}}}, {}));
        pending_fill_zeros_ops.push_back(std::move(fill_zeros_op));
F
fengjiayi 已提交
357 358 359
      }
    }
  }
F
fengjiayi 已提交
360

F
fengjiayi 已提交
361
  for (auto& p : pending_fill_zeros_ops) {
F
fengjiayi 已提交
362
    grad_op_descs.insert(grad_op_descs.begin(), std::move(p));
F
fengjiayi 已提交
363
  }
F
fengjiayi 已提交
364 365 366
  return grad_op_descs;
}

F
fengjiayi 已提交
367 368
std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
    ProgramDescBind& program_desc, int block_idx,
369 370
    std::unordered_set<std::string>* no_grad_vars,
    std::unordered_map<std::string, std::string>* grad_to_var) {
F
fengjiayi 已提交
371
  BlockDescBind* cur_block = program_desc.Block(block_idx);
372
  std::vector<OpDescBind*> op_descs = cur_block->AllOps();
F
Update  
fengjiayi 已提交
373 374
  std::unordered_map<std::string, std::vector<size_t>> dup_out_ops;
  size_t grad_desc_idx = 0;
F
Update  
fengjiayi 已提交
375
  std::vector<std::unique_ptr<OpDescBind>> backward_descs;
376

F
fengjiayi 已提交
377
  for (auto it = op_descs.rbegin(); it != op_descs.rend(); ++it) {
F
Update  
fengjiayi 已提交
378
    std::vector<std::unique_ptr<OpDescBind>> op_grads =
379
        MakeOpGrad(*it, no_grad_vars, grad_to_var);
F
fengjiayi 已提交
380 381 382

    if ((*it)->Type() == "recurrent") {
      PADDLE_ENFORCE_EQ(
383
          op_grads.size(), static_cast<size_t>(1),
F
fengjiayi 已提交
384
          "rnn_op's gradient process should contain only one op.");
385
      int step_block_idx = (*it)->GetBlockAttr("step_block");
386 387
      auto backward_block_op_descs = MakeBlockBackward(
          program_desc, step_block_idx, no_grad_vars, grad_to_var);
F
fengjiayi 已提交
388 389
      BlockDescBind* backward_block = program_desc.AppendBlock(*cur_block);
      for (auto& ptr : backward_block_op_descs) {
390
        backward_block->AppendAllocatedOp(std::move(ptr));
F
fengjiayi 已提交
391 392 393 394
      }
      op_grads[0]->SetBlockAttr("step_block", *backward_block);
    }

F
Update  
fengjiayi 已提交
395
    for (const auto& desc : op_grads) {
F
fengjiayi 已提交
396
      for (const std::string& out_name : desc->OutputArgumentNames()) {
F
Update  
fengjiayi 已提交
397 398 399 400
        dup_out_ops[out_name].emplace_back(grad_desc_idx);
      }
      ++grad_desc_idx;
    }
F
fengjiayi 已提交
401 402 403
    std::transform(
        op_grads.begin(), op_grads.end(), std::back_inserter(backward_descs),
        [](std::unique_ptr<OpDescBind>& ptr) { return std::move(ptr); });
F
Update  
fengjiayi 已提交
404 405
  }
  // Check whether some variables are written more than once
F
Update  
fengjiayi 已提交
406
  std::list<std::pair<size_t, std::unique_ptr<OpDescBind>>> pending_sum_ops;
F
Update  
fengjiayi 已提交
407 408 409 410 411 412 413
  for (const auto& dup : dup_out_ops) {
    const std::string& out_name = dup.first;
    const std::vector<size_t> dup_op = dup.second;
    if (out_name != kEmptyVarName && dup_op.size() > 1) {
      std::vector<std::string> sum_op_inputs;
      for (size_t i = 0; i < dup_op.size(); ++i) {
        std::string new_name = out_name + "@RENAME@" + std::to_string(i);
F
Update  
fengjiayi 已提交
414
        backward_descs[dup_op[i]]->Rename(out_name, new_name);
F
Update  
fengjiayi 已提交
415 416
        sum_op_inputs.emplace_back(new_name);
      }
F
fengjiayi 已提交
417 418 419
      std::unique_ptr<OpDescBind> sum_op(new OpDescBind(
          "sum", {{"X", sum_op_inputs}}, {{"Out", {out_name}}}, {}));
      pending_sum_ops.push_back({dup_op.back(), std::move(sum_op)});
F
Update  
fengjiayi 已提交
420 421 422
    }
  }
  pending_sum_ops.sort(
F
Update  
fengjiayi 已提交
423 424 425 426
      [](const std::pair<size_t, std::unique_ptr<OpDescBind>>& a,
         const std::pair<size_t, std::unique_ptr<OpDescBind>>& b) {
        return a.first > b.first;
      });
F
Update  
fengjiayi 已提交
427
  for (auto& p : pending_sum_ops) {
F
Update  
fengjiayi 已提交
428 429
    backward_descs.insert(backward_descs.begin() + p.first + 1,
                          std::move(p.second));
F
Update  
fengjiayi 已提交
430
  }
431

F
fengjiayi 已提交
432 433 434
  return backward_descs;
}

Q
qiaolongfei 已提交
435 436 437
ParamGradInfoMap AppendBackward(
    ProgramDescBind& program_desc, const VarDescBind& target,
    const std::unordered_set<std::string>& no_grad_vars) {
F
fengjiayi 已提交
438 439 440 441 442 443
  std::unordered_set<std::string> no_grad_var_names;
  no_grad_var_names.reserve(no_grad_vars.size() + 1);
  no_grad_var_names.insert(std::string(kEmptyVarName) + kGradVarSuffix);
  for (auto& name : no_grad_vars) {
    no_grad_var_names.insert(GradVarName(name));
  }
444

F
fengjiayi 已提交
445
  const int root_block_idx = 0;
446 447 448
  auto root_block = program_desc.Block(root_block_idx);

  // insert fill one op for target
Q
Qiao Longfei 已提交
449
  // TODO(qiao) add some check to the target.
450
  std::string fill_one_op_out = GradVarName(target.Name());
Q
Qiao Longfei 已提交
451 452 453 454 455
  std::vector<int64_t> target_shape_desc = target.Shape();
  std::vector<int> target_shape;
  std::transform(target_shape_desc.begin(), target_shape_desc.end(),
                 std::back_inserter(target_shape),
                 [](int64_t dim) { return static_cast<int>(dim); });
Y
Yu Yang 已提交
456 457
  VLOG(3) << "backward from loss=" << target.Name()
          << " data_type=" << target.GetDataType();
458 459
  std::unique_ptr<OpDescBind> fill_one_op(
      new OpDescBind("fill_constant", {}, {{"Out", {fill_one_op_out}}},
Q
Qiao Longfei 已提交
460
                     {{"shape", target_shape},
461
                      {"value", static_cast<float>(1.0)},
Y
Yu Yang 已提交
462
                      {"data_type", target.GetDataType()}}));
Q
QI JUN 已提交
463 464 465
  // infer var type of fill_one_op
  fill_one_op->InferVarType(root_block);

466 467
  root_block->AppendAllocatedOp(std::move(fill_one_op));
  size_t forward_op_num = root_block->OpSize();
468
  size_t forward_block_num = program_desc.Size();
Y
Yu Yang 已提交
469 470

  // Insert backward operators
471 472 473
  std::unordered_map<std::string, std::string> grad_to_var;
  auto backward_op_descs = MakeBlockBackward(program_desc, root_block_idx,
                                             &no_grad_var_names, &grad_to_var);
Y
Yu Yang 已提交
474

F
fengjiayi 已提交
475
  for (auto& ptr : backward_op_descs) {
476
    root_block->AppendAllocatedOp(std::move(ptr));
477
  }
Q
Qiao Longfei 已提交
478 479 480 481 482 483
  // Create Variable

  // Create target gradient variable
  std::unordered_map<std::string, GradVarInfo> retv;

  auto var = root_block->Var(fill_one_op_out);
Y
Yu Yang 已提交
484
  var->SetDataType(target.GetDataType());
Q
Qiao Longfei 已提交
485 486 487 488 489
  var->SetShape(target.Shape());
  auto& target_grad = retv[target.Name()];
  target_grad.name_ = fill_one_op_out;
  target_grad.block_idx_ = root_block_idx;
  target_grad.op_idx_ = static_cast<int>(forward_op_num);
490 491

  // create grad_var for all blocks in this program
492
  CreateGradVarInBlock(forward_op_num, grad_to_var, root_block, &retv);
493 494
  for (size_t block_index = forward_block_num;
       block_index < program_desc.Size(); ++block_index) {
495 496
    CreateGradVarInBlock(0, grad_to_var, program_desc.Block(block_index),
                         &retv);
F
fengjiayi 已提交
497
  }
Y
Yu Yang 已提交
498
  return retv;
F
Update  
fengjiayi 已提交
499 500
}

Y
Yu Yang 已提交
501 502
}  // namespace framework
}  // namespace paddle