quantization_pass.py 39.7 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
17
import six
W
WangZhen 已提交
18
from ..... import compat as cpt
W
WangZhen 已提交
19
from .... import core
20
from .... import Executor
21
from ....framework import IrGraph
22
from ....framework import IrNode
23
from ....framework import Program
W
WangZhen 已提交
24
from ....initializer import Constant
25
from ....initializer import NumpyArrayInitializer
W
WangZhen 已提交
26 27
from .... import unique_name

28 29 30 31
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
    'TransformForMobilePass'
]
W
WangZhen 已提交
32

W
WangZhen 已提交
33

34
class QuantizationTransformPass(object):
W
WangZhen 已提交
35
    def __init__(self,
36
                 scope=None,
37
                 place=None,
W
WangZhen 已提交
38 39 40 41
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
42 43
                 window_size=10000,
                 moving_rate=0.9):
W
WangZhen 已提交
44
        """
45
        Convert and rewrite the IrGraph according to weight and
W
WangZhen 已提交
46
        activation quantization type.
47

W
WangZhen 已提交
48
        Args:
49 50 51
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
            type, this pass will create some new parameters. The scope is used to
            initialize these new parameters.
52
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
53
            parameters described above.
W
WangZhen 已提交
54 55 56 57
            weight_bits (int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits (int): quantization bit number for activation.
            activation_quantize_type (str): quantization type for activation,
58 59 60 61 62
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
W
WangZhen 已提交
63
            weight_quantize_type (str): quantization type for weights,
64 65 66
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
W
WangZhen 已提交
67
            window_size (int): the window size for 'range_abs_max' quantization.
68

W
WangZhen 已提交
69 70
        Examples:
        .. code-block:: python
71 72 73 74
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
75
            from paddle.fluid.contrib.slim.graph import IrGraph
76 77
            from paddle.fluid import core

78
            graph = IrGraph(core.Graph(program.desc), for_test=False)
79
            place = fluid.CPUPlace()
80
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
81
            place)
82
            transform_pass.apply(graph)
W
WangZhen 已提交
83
        """
84
        self._scope = scope
85
        self._place = place
86 87
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
W
WangZhen 已提交
88

89 90 91 92 93
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
        assert activation_quantize_type != 'channel_wise_abs_max', "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
94 95 96
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be ",
97 98
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'.",
                str(activation_quantize_type))
W
WangZhen 已提交
99 100 101
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be ",
102
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' or 'moving_average_abs_max'.",
103
                str(weight_quantize_type))
W
WangZhen 已提交
104

105 106 107
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
108
        self._moving_rate = moving_rate
W
WangZhen 已提交
109

110 111
        self._need_initialized = collections.OrderedDict()
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
112
        self._conv_ops = ['conv2d', 'depthwise_conv2d']
113 114
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
115
        ]
116 117
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
118

119
    def apply(self, graph):
120 121 122 123 124 125 126 127
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
        """
W
WangZhen 已提交
128
        assert isinstance(graph,
129 130 131
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._need_initialized.clear()
        self._is_test = graph.is_test()
W
WangZhen 已提交
132 133
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
134
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
W
WangZhen 已提交
135 136 137 138 139 140

        def _transform_forward(graph, op):
            for var_node in op.inputs:
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
W
WangZhen 已提交
141
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
142 143
                    else self._activation_bits
                    quant_type = self._weight_quantize_type if var_node.name() \
W
WangZhen 已提交
144
                        in persistable_vars else self._activation_quantize_type
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
                    if quant_type == 'channel_wise_abs_max':
                        assert var_node.name(
                        ) in persistable_vars, "'channel_wise_abs_max' can only be applied on weights."
                        if op.name() in self._conv_ops:
                            quant_var_node, scale_var_node = self._insert_channel_quant_op(
                                graph, var_node, quant_bits)
                            dequant_var_node = self._insert_channel_dequant_op(
                                graph, quant_var_node, [scale_var_node],
                                [quant_bits])
                        else:
                            quant_var_node, scale_var_node = self._insert_quant_op(
                                graph, var_node, quant_bits, 'abs_max')
                            dequant_var_node = self._insert_dequant_op(
                                graph, quant_var_node, scale_var_node,
                                quant_bits)
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
                            graph, var_node, quant_bits, quant_type)
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
W
WangZhen 已提交
165
                    dequantized_vars[var_node.name()] = dequant_var_node
166
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
167 168 169 170 171 172

        def _transform_backward(graph, op):
            no_dequanted_input_vars = True
            for var_node in op.inputs:
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
173
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
174 175 176 177
                    no_dequanted_input_vars = False
            if no_dequanted_input_vars:
                raise ValueError("There is no dequanted inputs for op %s." %
                                 (op.name()))
W
WangZhen 已提交
178

179
        if not self._is_test:
W
WangZhen 已提交
180
            self._create_global_step(graph)
181
        ops = graph.all_op_nodes()
W
WangZhen 已提交
182 183
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
184
        for op in ops:
185
            if op.name() in self._quantizable_ops:
W
WangZhen 已提交
186
                _transform_forward(graph, op)
W
WangZhen 已提交
187 188
        # The loop for renaming the inputs of backward op.
        for op in ops:
189
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
190
                _transform_backward(graph, op)
W
WangZhen 已提交
191

192 193
        if len(self._need_initialized) > 0:
            assert self._scope is not None, \
194
            'The scope cannot be set None when activation_quantize_type equals to range_abs_max.'
195 196
            assert self._place is not None, \
            'The place cannot be set None when activation_quantize_type equals to range_abs_max.'
197
            init_program = Program()
198
            for var_desc, initializer in six.iteritems(self._need_initialized):
W
WangZhen 已提交
199 200 201 202 203 204 205
                var = init_program.global_block().create_var(
                    name=var_desc.name(),
                    shape=var_desc.shape(),
                    dtype=var_desc.dtype(),
                    type=var_desc.type(),
                    lod_level=var_desc.lod_level(),
                    persistable=var_desc.persistable())
206
                initializer(var, init_program.global_block())
207 208
            exe = Executor(self._place)
            exe.run(program=init_program, scope=self._scope)
209 210

        return graph
W
WangZhen 已提交
211

W
WangZhen 已提交
212
    def _create_global_step(self, graph):
213 214
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
215
            counter_name = cpt.to_text('@STEP_COUNTER@')
216
            for node in graph.all_var_nodes():
W
WangZhen 已提交
217
                if node.name() == counter_name:
218 219
                    self._global_step = node
            if self._global_step is None:
220
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
221 222 223 224
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
225
                self._need_initialized[global_step_in.var()] = \
W
WangZhen 已提交
226 227 228
                    Constant(value=0, force_cpu=True)
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
229
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
230 231
                increment_op = graph.create_op_node(
                    op_type='increment',
232 233 234 235 236
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
237 238
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
239 240 241
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
242

W
WangZhen 已提交
243 244 245 246 247 248 249
    def _insert_quant_op(self, graph, var_node, quant_bits, quant_type):
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
            return self._insert_quant_abs_max_op(graph, var_node, quant_bits)
        elif quant_type == 'range_abs_max':
W
WangZhen 已提交
250 251
            return self._insert_quant_range_abs_max_op(graph, var_node,
                                                       quant_bits)
252 253 254
        elif quant_type == 'moving_average_abs_max':
            return self._insert_quant_moving_average_abs_max_op(graph, var_node,
                                                                quant_bits)
W
WangZhen 已提交
255 256 257 258 259 260 261 262 263

    def _insert_quant_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
264 265 266
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
267 268
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
269
            var_type=var_node.type(),
270
            shape=[1],
271
            var_dtype=var_node.dtype())
W
WangZhen 已提交
272 273
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
274 275 276 277
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
278 279 280
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
281 282 283
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
284 285 286 287 288 289 290 291 292 293
        return quant_var_node, scale_var_node

    def _insert_quant_range_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
294 295 296
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
297

298
        scale_in_node = graph.create_persistable_node(
W
WangZhen 已提交
299 300 301
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
302
            var_dtype=var_node.dtype())
303
        self._need_initialized[scale_in_node.var()] = Constant(value=0.001)
W
WangZhen 已提交
304 305 306 307 308

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

309
        if not self._is_test:
W
WangZhen 已提交
310
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
311
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
312 313
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
314
                shape=[self._window_size],
315
                var_dtype=var_node.dtype())
316 317
            self._need_initialized[scales_node.var()] = Constant(value=0)
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
318 319
            outputs['OutScales'] = scales_node
        attrs = {
320
            'window_size': self._window_size,
W
WangZhen 已提交
321
            'bit_length': quant_bits,
322 323
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
324 325 326 327 328 329 330
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

331 332 333 334
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
335

336 337 338
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
339 340 341

        return quant_var_node, scale_out_node

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node,
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        self._need_initialized[scale_in_node.var()] = Constant(value=0.001)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            self._need_initialized[state_in_node.var()] = Constant(value=1)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            self._need_initialized[accum_in_node.var()] = Constant(value=1)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
    def _insert_channel_quant_op(self, graph, var_node, quant_bits):
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=var_node.type(),
            shape=[var_node.shape()[0]],
            var_dtype=var_node.dtype())
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
440 441 442 443 444 445 446 447
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
448 449 450
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
451 452 453
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
454 455 456 457
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
458 459 460
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
461 462 463
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
464 465
        return dequant_var_node

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
                                   quant_bits):
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

W
WangZhen 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
507
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
508 509
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
510 511 512


class QuantizationFreezePass(object):
513 514 515 516 517 518 519 520 521 522 523 524
    """
    The freeze pass is used to adjust the quantize operator order, for example:
        1) `activation -> quant -> dequant -> conv2d` will be freezed into
        `activation -> quant -> conv2d -> dequant`
        2) `weight -> quant -> dequant -> conv2d` will be freezed into `weight -> conv2d`,
        and weight will be sacled offline.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
        weight_bits (int): quantization bit number for weights.
        activation_bits (int): quantization bit number for activation.
525
        weight_quantize_type (str): quantization type for weights, support 'abs_max' and 'channel_wise_abs_max'.
526 527 528 529
        The 'range_abs_max' usually is not used for weight, since weights are fixed once the
        model is well trained.
    """

W
WangZhen 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
                 weight_quantize_type='abs_max'):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
546
        self._conv_ops = ['conv2d', 'depthwise_conv2d']
W
WangZhen 已提交
547
        self._fake_quant_op_names = [
548
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
549 550 551 552 553
            'fake_quantize_moving_average_abs_max',
            'fake_channel_wise_quantize_abs_max'
        ]
        self._fake_dequant_op_names = [
            'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
W
WangZhen 已提交
554 555 556 557 558 559
        ]
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
        self._var_scale_map = collections.OrderedDict()

    def apply(self, graph):
560 561 562 563 564 565
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
        """
566 567
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
568 569 570
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
571
                input_arg_name = op_node.input('X')[0]
W
WangZhen 已提交
572 573 574 575
                if input_arg_name in persistable_vars:
                    if self._weight_quantize_type == 'abs_max':
                        param = self._load_var(input_arg_name)
                        scale_v = np.max(np.abs(param))
576 577 578 579 580 581 582 583
                    elif self._weight_quantize_type == 'channel_wise_abs_max':
                        param = self._load_var(input_arg_name)
                        if len(param.shape) == 4:  # conv2d or depthwise_conv2d
                            scale_v = []
                            for i in range(param.shape[0]):
                                scale_v.append(np.max(np.abs(param[i])))
                        else:
                            scale_v = np.max(np.abs(param))
W
WangZhen 已提交
584
                    else:
585 586
                        scale_v = self._load_var(
                            op_node.output('OutScale')[0])[0]
W
WangZhen 已提交
587 588 589 590 591
                    self._var_scale_map[input_arg_name] = scale_v
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
                    # quantize weight and restore
                    param_v = self._load_var(input_arg_name)
                    quantized_param_v = self._quant(param_v, scale_v,
W
WangZhen 已提交
592
                                                    self._weight_bits)
W
WangZhen 已提交
593
                    self._restore_var(input_arg_name, quantized_param_v)
594 595 596
                else:
                    scale_v = graph.var_node(op_node.output('OutScale')[0])
                    self._var_scale_map[input_arg_name] = scale_v
W
WangZhen 已提交
597

598
        ops = graph.all_op_nodes()
W
WangZhen 已提交
599 600 601 602 603
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

604
        ops = graph.all_op_nodes()
W
WangZhen 已提交
605 606 607
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
608 609 610 611
                if self._weight_quantize_type == 'channel_wise_abs_max' and op_name in self._conv_ops:
                    self._insert_post_channel_dequant_op(graph, op_node)
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
612 613 614 615 616 617 618

        for op_node in ops:
            # insert dequant_op after fc/conv, need to rename inputs of the followed ops
            for var_node in op_node.inputs:
                name = var_node.name()
                if name in self._op_output_rename_map:
                    old_in = graph.var_node(name)
W
WangZhen 已提交
619
                    new_in = self._op_output_rename_map[name]
W
WangZhen 已提交
620 621 622 623
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
624
        return graph
W
WangZhen 已提交
625 626

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
627 628
        k = op_node.output('Out')[0]
        v = op_node.input('X')[0]
W
WangZhen 已提交
629 630 631 632
        if v not in self._op_input_rename_map:
            self._op_input_rename_map[k] = v
        else:
            self._op_input_rename_map[k] = self._op_input_rename_map[v]
W
WangZhen 已提交
633
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
634

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
    def _insert_post_channel_dequant_op(self, graph, op_node):
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
            if name in self._op_input_rename_map:
                old_in = graph.var_node(name)
                new_in = graph.var_node(self._op_input_rename_map[name])
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
            scale_v = self._var_scale_map[original_var_name]
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
                scale_var_node = self._var_scale_map[original_var_name]

        if len(op_node.outputs) != 1:
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

        output_var_node = op_node.outputs[0]
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
        init_program = Program()
        weight_scale_var = init_program.global_block().create_var(
            name=weight_scale_node.name(),
            shape=weight_scale_node.shape(),
            dtype=weight_scale_node.dtype(),
            type=weight_scale_node.type(),
            lod_level=weight_scale_node.var().lod_level(),
            persistable=weight_scale_node.persistable())
        initializer = NumpyArrayInitializer(value=channel_scale)
        initializer(weight_scale_var, init_program.global_block())
        exe = Executor(self._place)
        exe.run(program=init_program, scope=self._scope)
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        self._op_output_rename_map[output_var_node.name()] = dequant_var_node
        return dequant_var_node

W
WangZhen 已提交
701
    def _insert_post_dequant_op(self, graph, op_node):
702
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
W
WangZhen 已提交
703
        for var_node in op_node.inputs:
W
WangZhen 已提交
704 705 706 707
            name = var_node.name()
            if name in self._op_input_rename_map:
                old_in = graph.var_node(name)
                new_in = graph.var_node(self._op_input_rename_map[name])
W
WangZhen 已提交
708
                new_in.clear_outputs()
W
WangZhen 已提交
709 710
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
W
WangZhen 已提交
711
            scale_v = self._var_scale_map[original_var_name]
W
WangZhen 已提交
712 713 714 715 716 717 718 719
            if original_var_name in persistable_vars:
                param_range = (1 << (self._weight_bits - 1)) - 1
                act_range = (1 << (self._activation_bits - 1)) - 1
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
                max_range = param_range * act_range / scale_v
            else:
720
                assert isinstance(scale_v, IrNode)
W
WangZhen 已提交
721 722
                scale_var_node = self._var_scale_map[original_var_name]

W
WangZhen 已提交
723
        if len(op_node.outputs) != 1:
W
WangZhen 已提交
724 725 726
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

W
WangZhen 已提交
727
        output_var_node = op_node.outputs[0]
W
WangZhen 已提交
728 729
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
730 731 732
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
733 734
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
735 736 737 738
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
739 740 741 742 743 744
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
745
        self._op_output_rename_map[output_var_node.name()] = dequant_var_node
W
WangZhen 已提交
746 747 748 749 750
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

751 752 753
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
754 755 756

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
757
        ops = graph.all_op_nodes()
W
WangZhen 已提交
758 759 760 761 762 763
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

764 765 766 767 768 769
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
793
    def _is_float(self, v):
W
WangZhen 已提交
794 795 796
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

W
WangZhen 已提交
797
    def _quant(self, x, scale, num_bits):
798 799 800 801 802 803
        if isinstance(scale, list):
            for i, s in enumerate(scale):
                x[i] = np.round(x[i] / s * ((1 << (num_bits - 1)) - 1))
            return x
        else:
            return np.round(x / scale * ((1 << (num_bits - 1)) - 1))
804 805 806


class ConvertToInt8Pass(object):
807 808 809 810 811 812 813 814 815
    """
    Convert the weights into int8_t type.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
        8bits weight tensors.
    """

816 817 818 819 820 821 822 823 824 825
    def __init__(self, scope, place):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']

    def apply(self, graph):
826 827 828 829 830 831 832
        """
        Convert weights' tpye of the graph. After that, the data type of the
        graph weigths is int8_t.

        Args:
            graph(IrGraph): the applied graph.
        """
833 834
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
        input_map = {}
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
855
        int8_var_node = graph.create_persistable_node(
856
            name=cpt.to_text(int8_var_node_name),
857 858
            var_type=var_node.type(),
            shape=var_node.shape(),
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
874
        ops = graph.all_op_nodes()
875 876 877 878 879 880
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

881 882 883 884 885 886
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
887 888 889 890
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
891 892 893 894
    """
    This pass is used to convert the freezed graph for paddle-mobile execution.
    """

895 896
    def __init__(self):
        self._fake_quant_op_names = [
897 898 899 900 901 902
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
            'fake_quantize_moving_average_abs_max',
            'fake_channel_wise_quantize_abs_max'
        ]
        self._fake_dequant_op_names = [
            'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
903 904 905
        ]

    def apply(self, graph):
906 907 908 909 910 911 912 913
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
        """
914
        ops = graph.all_op_nodes()
915 916 917
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
918
                op_node.set_type('quantize')
919 920 921 922 923 924 925
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
926
                op_node.set_type('dequantize')
927 928 929 930 931 932 933 934
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)

        return graph