multi_devices_graph_pass.cc 33.8 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
C
chengduoZH 已提交
18 19
#include <vector>

20
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
21
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/framework/details/computation_op_handle.h"
23
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
24
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
X
Xin Pan 已提交
25
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
C
chengduoZH 已提交
26
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
27
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
X
better  
Xin Pan 已提交
29
#include "paddle/fluid/framework/ir/graph_helper.h"
X
Xin Pan 已提交
30
#include "paddle/fluid/framework/ir/node.h"
Y
Fix bug  
yuyang18 已提交
31
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
33

Y
Yu Yang 已提交
34 35 36
namespace paddle {
namespace framework {
namespace details {
X
Xin Pan 已提交
37

X
Xin Pan 已提交
38
namespace {
X
Xin Pan 已提交
39
// TODO(panyx0718): Clean this up as well.
X
Xin Pan 已提交
40 41 42 43 44
// all operators. NOTE that even we use a vector here, the operators is
// unordered.
typedef std::vector<OpHandleBase *> GraphOps;
const char kGraphOps[] = "ops";

C
chengduo 已提交
45 46 47 48 49 50
bool OpHaveRole(const ir::Node &node, const framework::OpRole &role) {
  return boost::get<int>(
             node.Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
         static_cast<int>(role);
}

X
Xin Pan 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
void PolishGraphToSupportDataHazards(ir::Graph *graph) {
  for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) {
    for (auto &name_pair : var_map) {
      if (name_pair.second.size() <= 1) {
        continue;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        OpHandleBase *write_op = (*it_new)->GeneratedOp();
        const auto &read_ops = (*it_old)->PendingOps();

        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;
          if (read_op == write_op) {
            // Read Write is the same op.
            continue;
          }
          bool has_dep = false;
          for (auto *r_out : read_op->Outputs()) {
            for (auto *w_in : write_op->Inputs()) {
              if (r_out->Node() == w_in->Node()) {
                has_dep = true;
                break;
              }
            }
          }
          if (has_dep) continue;

          auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
          read_op->AddOutput(dep_var);
          write_op->AddInput(dep_var);
          graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
        }
      }
    }
  }
}

VarHandle *CreateOrGetLatestVarHandle(ir::Graph *graph, ir::Node *node,
                                      const platform::Place &place,
                                      size_t place_offset) {
  auto &var_holders = graph->Get<GraphVars>(kGraphVars)[place_offset];
  auto &var_holder = var_holders[node->Name()];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    if (node->Var()) {
      var = new VarHandle(graph->CreateVarNode(node->Var()), 0, place_offset,
                          node->Name(), place);
    } else {
      var = new VarHandle(
          graph->CreateEmptyNode(node->Name(), ir::Node::Type::kVariable), 0,
          place_offset, node->Name(), place);
    }
    var_holder.emplace_back(var);
  } else {
X
clean1  
Xin Pan 已提交
108
    var = *var_holder.rbegin();
X
Xin Pan 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  }
  return var;
}

void CreateOpOutput(ir::Graph *graph, OpHandleBase *op_handle,
                    ir::Node *new_node, const platform::Place &place,
                    size_t place_offset) {
  auto &vars =
      graph->Get<GraphVars>(kGraphVars)[place_offset][new_node->Name()];
  size_t version = vars.size();
  auto var =
      new VarHandle(new_node, version, place_offset, new_node->Name(), place);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
}

void AddOutputToLeafOps(ir::Graph *graph) {
  for (auto &op : graph->Get<GraphOps>(kGraphOps)) {
    if (!op->Outputs().empty()) {
      continue;
    }
    auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
    graph->Get<GraphDepVars>(kGraphDepVars).emplace(dummy_leaf);
    op->AddOutput(dummy_leaf);
  }
}
}  // namespace
Y
Yu Yang 已提交
136

X
Xin Pan 已提交
137 138 139 140
static const char kLossVarName[] = "loss_var_name";
static const char kPlaces[] = "places";
static const char kLocalScopes[] = "local_scopes";
static const char kStrategy[] = "strategy";
141
static const char kNRanks[] = "nranks";
X
Xin Pan 已提交
142

X
Xin Pan 已提交
143
void MultiDevSSAGraphBuilder::Init() const {
X
clean  
Xin Pan 已提交
144 145 146
  all_vars_.clear();
  balance_vars_.clear();

X
Xin Pan 已提交
147 148 149 150
  loss_var_name_ = Get<const std::string>(kLossVarName);
  places_ = Get<const std::vector<platform::Place>>(kPlaces);
  local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes);
  strategy_ = Get<const BuildStrategy>(kStrategy);
P
peizhilin 已提交
151
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
152
  nccl_ctxs_ = &Get<platform::NCCLContextMap>("nccl_ctxs");
Y
Yu Yang 已提交
153
#endif
X
Xin Pan 已提交
154

Y
Yancey1989 已提交
155
  balance_vars_.resize(places_.size(), 0);
C
chengduo 已提交
156

Y
yuyang18 已提交
157 158 159 160 161
  if (strategy_.enable_data_balance_ && places_.size() == 1) {
    LOG(WARNING) << "It is no need to enable data balance when there is only "
                    "one place. enable_data_balance is set to False.";
    strategy_.enable_data_balance_ = false;
  }
Y
Yu Yang 已提交
162 163
}

X
Xin Pan 已提交
164
std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
X
Xin Pan 已提交
165
    std::unique_ptr<ir::Graph> graph) const {
X
Xin Pan 已提交
166
  Init();
X
Xin Pan 已提交
167
  // Give the topology sort order and rebuild the graph structure.
C
chengduo 已提交
168 169 170 171 172 173
  std::vector<ir::Node *> sorted_ops = ir::TopologySortOperations(*graph);

  if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
    sorted_ops = SortForReduceMode(sorted_ops);
  }

X
Xin Pan 已提交
174 175
  auto nodes = graph->ReleaseNodes();
  ir::Graph &result = *graph;
176

177
  size_t nranks = Get<size_t>(kNRanks);
178

179
  for (auto &node : nodes) {
X
Xin Pan 已提交
180
    if (node->IsVar() && node->Var()) {
X
Xin Pan 已提交
181
      all_vars_.emplace(node->Name(), node->Var());
182
    }
C
fix ci  
chengduoZH 已提交
183
  }
Y
Yu Yang 已提交
184 185

  // We cannot invoke resize. It is a bug of GCC 4.8
X
Xin Pan 已提交
186 187 188
  result.Set(kGraphVars, new GraphVars(places_.size()));
  result.Set(kGraphDepVars, new GraphDepVars);
  result.Set(kGraphOps, new GraphOps);
189

C
chengduoZH 已提交
190 191 192
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  bcast_var_name_set.resize(places_.size());

Y
Yu Yang 已提交
193
  bool is_forwarding = true;
Y
Yancey1989 已提交
194
  bool is_dist_train = false;
195

X
Xin Pan 已提交
196 197
  std::unordered_map<std::string, int> sharded_var_device;

X
better  
Xin Pan 已提交
198
  for (ir::Node *node : sorted_ops) {
C
chengduo 已提交
199
    if (OpHaveRole(*node, OpRole::kRPC)) {
X
Xin Pan 已提交
200
      int op_dev_id = CreateRPCOp(&result, node, &sharded_var_device);
Y
Yancey1989 已提交
201 202 203 204 205 206 207 208 209 210 211 212
      PADDLE_ENFORCE(op_dev_id != -1,
                     "Can not schedule the RPC operator to the right place.");
      if (node->Op()->Type() == "recv") {
        auto recv_vars_attr =
            boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                OpProtoAndCheckerMaker::OpRoleVarAttrName()));
        PADDLE_ENFORCE(recv_vars_attr.size() == 2UL);  // [parameter, gradient]
        if (recv_vars_attr[0].find(".block") == std::string::npos) {
          bcast_var_name_set[op_dev_id].emplace(recv_vars_attr[0]);
        }
      }
      is_dist_train = true;
C
chengduo 已提交
213
    } else if (OpHaveRole(*node, OpRole::kDist)) {
X
Xin Pan 已提交
214
      int op_dev_id = CreateDistTrainOp(&result, node, &sharded_var_device);
Y
Yancey1989 已提交
215 216 217 218
      if (node->Op()->Type() == "concat") {
        auto origin_param_name = node->Op()->OutputArgumentNames()[0];
        bcast_var_name_set[op_dev_id].emplace(origin_param_name);
      }
X
Xin Pan 已提交
219
    } else if (IsScaleLossOp(node)) {
Y
Yu Yang 已提交
220
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
221 222
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
X
Xin Pan 已提交
223
        // TODO(paddle-dev): Why is there no input for this op_handle?
224
        auto loss_grad_name = node->Op()->OutputArgumentNames()[0];
W
Wu Yi 已提交
225 226 227
        auto out_dtype = all_vars_.at(loss_grad_name)->GetDataType();
        CreateScaleLossGradOp(&result, loss_grad_name, node->outputs[0],
                              out_dtype);
Y
Yu Yang 已提交
228
      }
229 230 231 232
      // This assumes the backward generating code will ensure IsScaleLossOp
      // is true only for the op that scale the final scalar loss.
      // It also assumes backward op will always follow the forward op in
      // the block.
Y
Yu Yang 已提交
233
      is_forwarding = false;
Y
Yu Yang 已提交
234
    } else {
C
chengduo 已提交
235
      int op_dev_id = GetOpDeviceID(node, sharded_var_device);
C
chengduo 已提交
236
      if (op_dev_id != -1) {  // This op only runs on one specific device.
X
Xin Pan 已提交
237
        CreateComputationalOp(&result, node, op_dev_id);
238
        for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
239
          sharded_var_device.emplace(n->Name(), op_dev_id);
C
chengduoZH 已提交
240
        }
C
chengduo 已提交
241 242 243
      } else {
        // This op runs on all devices, and its output may have parameter's
        // gradients.
X
Xin Pan 已提交
244
        // TODO(paddle-dev): Why is so special about "read" op?
245 246
        if (node->Op()->Type() == "read" && strategy_.enable_data_balance_) {
          node->Op()->SetAttr("throw_eof_exp", false);
X
Xin Pan 已提交
247
          CreateComputationalOps(&result, node, places_.size());
248
          const auto &data_var_names = node->Op()->Output("Out");
249
          InsertDataBalanceOp(&result, data_var_names);
F
fengjiayi 已提交
250
        } else {
X
Xin Pan 已提交
251
          CreateComputationalOps(&result, node, places_.size());
252 253
        }

254
        if (!is_forwarding && nranks > 1UL) {
C
chengduo 已提交
255 256 257 258 259
          bool is_bk_op =
              static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
                                    OpProtoAndCheckerMaker::OpRoleAttrName())) &
                                static_cast<int>(OpRole::kBackward));
          if (!is_bk_op) continue;
C
chengduo 已提交
260 261
          // Currently, we assume that once gradient is generated, it can be
          // broadcast, and each gradient is only broadcast once.
C
chengduo 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
          try {
            auto backward_vars = boost::get<std::vector<std::string>>(
                node->Op()->GetNullableAttr(
                    OpProtoAndCheckerMaker::OpRoleVarAttrName()));

            PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

            for (size_t i = 0; i < backward_vars.size(); i += 2) {
              auto &p_name = backward_vars[i];
              auto &g_name = backward_vars[i + 1];
              VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;
              size_t cur_device_id = -1;
              switch (strategy_.reduce_) {
                case BuildStrategy::ReduceStrategy::kReduce:
                  cur_device_id = GetAppropriateDeviceID({g_name});
                  CreateReduceOp(&result, g_name, cur_device_id);
                  sharded_var_device.emplace(g_name, cur_device_id);
                  if (!is_dist_train) {
                    bcast_var_name_set[cur_device_id].emplace(p_name);
                  }
                  break;
                case BuildStrategy::ReduceStrategy::kAllReduce:
                  if (IsSparseGradient(g_name)) {
                    CreateReduceOp(&result, g_name, 0);
                    CreateBroadcastOp(&result, g_name, 0);
                  } else {
                    InsertAllReduceOp(&result, g_name);
                  }
                  break;
                default:
                  LOG(FATAL) << "Unknown reduce strategy ";
                  break;
Y
yuyang18 已提交
294
              }
C
chengduoZH 已提交
295
            }
C
chengduo 已提交
296
          } catch (boost::bad_get e) {
Y
Yu Yang 已提交
297 298 299 300 301
          }
        }
      }
    }
  }
302
  bool use_gpu = false;
P
peizhilin 已提交
303
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
304 305 306
  use_gpu = nccl_ctxs_ != nullptr;
#endif

Y
Yancey1989 已提交
307 308 309 310 311
  // Insert broadcast operators principle:
  // 1. Broadcast optimized parameters in Reduce strategy;
  // 2. No need broadcast optimized parameters in AllReduce strategy because of
  //    the optimization sub-graph would be run on every GPU;
  // 3. Allways broadcast received parameters in Distribute Training.
Y
Yancey1989 已提交
312 313 314
  if ((use_gpu &&
       strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) ||
      is_dist_train) {
315 316 317 318 319 320 321 322
    if (strategy_.fuse_broadcast_op_) {
      CreateFusedBroadcastOp(&result, bcast_var_name_set);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(&result, bcast_name, dev_id);
        }
323
      }
C
chengduoZH 已提交
324 325
    }
  }
Y
Yu Yang 已提交
326
  /*
X
Xin Pan 已提交
327 328 329
  Dependency graph has been constructed. However, there are still data
  hazards need to be handled.
 */
Y
Yu Yang 已提交
330
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
331

Y
Yu Yang 已提交
332 333 334 335
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);
X
Xin Pan 已提交
336
  result.Erase<GraphOps>(kGraphOps);
Q
qiaolongfei 已提交
337
  return graph;
Y
Yu Yang 已提交
338 339
}

C
chengduo 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
std::vector<ir::Node *> MultiDevSSAGraphBuilder::SortForReduceMode(
    const std::vector<ir::Node *> &topo_ops) const {
  std::unordered_map<std::string, int> sharded_var_device;
  std::vector<ir::Node *> sorted_ops;
  std::unordered_map<std::string, std::vector<ir::Node *>> delayed_op;
  sorted_ops.reserve(topo_ops.size());

  auto insert_delayed_op = [&](const std::string &var_name, int dev_id) {
    sharded_var_device.emplace(var_name, dev_id);
    if (delayed_op.count(var_name)) {
      auto &ops = delayed_op.at(var_name);
      sorted_ops.insert(sorted_ops.end(), ops.begin(), ops.end());
      delayed_op.at(var_name).clear();
    }
  };

  for (ir::Node *node : topo_ops) {
    int op_dev_id = GetOpDeviceID(node, sharded_var_device, &delayed_op);
    if (op_dev_id > -1) {
      // This op only runs on one specific device.
      sorted_ops.emplace_back(node);
      for (ir::Node *n : node->outputs) {
        insert_delayed_op(n->Name(), op_dev_id);
      }
    } else if (op_dev_id == -1) {
      // This op runs on all devices, and its output may have parameter's
      // gradients.
      sorted_ops.emplace_back(node);
      bool is_bk_op =
          static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
                                OpProtoAndCheckerMaker::OpRoleAttrName())) &
                            static_cast<int>(OpRole::kBackward));
      if (!is_bk_op) continue;
      // Currently, we assume that once gradient is generated, it can be
      // broadcast, and each gradient is only broadcast once.
      std::vector<std::string> backward_vars;
      try {
        backward_vars =
            boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      } catch (boost::bad_get e) {
      }
      PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

      for (size_t i = 0; i < backward_vars.size(); i += 2) {
        auto &g_name = backward_vars[i + 1];
        size_t cur_device_id = GetAppropriateDeviceID({g_name});
        insert_delayed_op(g_name, static_cast<int>(cur_device_id));
      }
    } else if (op_dev_id == -2) {
      // The Op on which the Op depends has not yet been generated.
    }
C
fix ci  
chengduoZH 已提交
392
  }
C
chengduo 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

  PADDLE_ENFORCE_EQ(sorted_ops.size(), topo_ops.size());
  return sorted_ops;
}

void MultiDevSSAGraphBuilder::CreateOpHandleIOs(ir::Graph *result,
                                                ir::Node *node,
                                                size_t place_id) const {
  auto p = places_[place_id];
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));

  for (ir::Node *input : node->inputs) {
    VarHandle *var = CreateOrGetLatestVarHandle(result, input, p, place_id);
    op_handle->AddInput(var);
  }

  for (ir::Node *output : node->outputs) {
    ir::Node *new_node = nullptr;
    if (output->Var()) {
      new_node = result->CreateVarNode(output->Var());
    } else {
      new_node =
          result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
    }
    CreateOpOutput(result, op_handle, new_node, p, place_id);
  }
}

size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
    if (all_vars_.find(var_name) == all_vars_.end()) continue;
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
442 443
}

444 445
void MultiDevSSAGraphBuilder::SetCommunicationContext(
    OpHandleBase *op_handle, const platform::Place &p) const {
P
peizhilin 已提交
446
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
447 448 449 450 451 452 453 454 455 456
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

X
Xin Pan 已提交
457
void MultiDevSSAGraphBuilder::CreateBroadcastOp(ir::Graph *result,
C
chengduoZH 已提交
458
                                                const std::string &p_name,
C
chengduoZH 已提交
459
                                                size_t src_dev_id) const {
P
peizhilin 已提交
460
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
polish  
Xin Pan 已提交
461 462 463
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
C
chengduoZH 已提交
464
#else
X
polish  
Xin Pan 已提交
465 466 467
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
C
chengduoZH 已提交
468
#endif
X
Xin Pan 已提交
469
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
X
Xin Pan 已提交
470

X
Xin Pan 已提交
471
  auto *in =
X
clean1  
Xin Pan 已提交
472
      result->Get<GraphVars>(kGraphVars).at(src_dev_id).at(p_name).back();
C
chengduoZH 已提交
473 474 475 476
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
477
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
478
    auto &vars = result->Get<GraphVars>(kGraphVars).at(i).at(p_name);
X
polish  
Xin Pan 已提交
479 480 481
    auto *out_var = new VarHandle(
        result->CreateEmptyNode(p_name, ir::Node::Type::kVariable), vars.size(),
        i, p_name, p);
C
chengduoZH 已提交
482 483 484 485 486
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

487 488 489
void MultiDevSSAGraphBuilder::CreateFusedBroadcastOp(
    ir::Graph *result,
    const std::vector<std::unordered_set<std::string>> &bcast_varnames) const {
P
peizhilin 已提交
490
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
#endif
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
  }

  for (size_t dev_id = 0; dev_id < bcast_varnames.size(); ++dev_id) {
    for (auto &p_name : bcast_varnames[dev_id]) {
      auto *in =
X
clean1  
Xin Pan 已提交
509
          result->Get<GraphVars>(kGraphVars).at(dev_id).at(p_name).back();
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
      op_handle->AddInput(in);
      for (size_t out_dev_id = 0; out_dev_id < places_.size(); ++out_dev_id) {
        auto &p = places_[out_dev_id];
        auto &vars =
            result->Get<GraphVars>(kGraphVars).at(out_dev_id).at(p_name);
        auto *out_var = new VarHandle(
            result->CreateEmptyNode(p_name, ir::Node::Type::kVariable),
            vars.size(), out_dev_id, p_name, p);
        vars.emplace_back(out_var);
        op_handle->AddOutput(out_var);
      }
    }
  }
}

X
Xin Pan 已提交
525
void MultiDevSSAGraphBuilder::CreateComputationalOp(ir::Graph *result,
526
                                                    ir::Node *node,
C
chengduoZH 已提交
527
                                                    int dev_id) const {
X
Xin Pan 已提交
528
  result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
529
      new ComputationOpHandle(result->CreateOpNode(node->Op()),
S
sneaxiy 已提交
530
                              local_scopes_[dev_id], places_[dev_id], dev_id));
531
  CreateOpHandleIOs(result, node, dev_id);
C
chengduoZH 已提交
532 533
}

X
Xin Pan 已提交
534
void MultiDevSSAGraphBuilder::InsertAllReduceOp(ir::Graph *result,
C
chengduoZH 已提交
535
                                                const std::string &og) const {
P
peizhilin 已提交
536
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
537
  result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
X
polish  
Xin Pan 已提交
538 539
      result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
540
#else
X
Xin Pan 已提交
541
  result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
X
polish  
Xin Pan 已提交
542 543
      result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
544
#endif
X
clean1  
Xin Pan 已提交
545
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
Y
Yu Yang 已提交
546 547 548

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
549
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
550
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
Y
Yu Yang 已提交
551 552
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
553
    op_handle->AddInput(prev_grad);
Y
Yu Yang 已提交
554

X
Xin Pan 已提交
555
    auto var =
X
polish  
Xin Pan 已提交
556 557
        new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                      vars.size(), i, og, p);
Y
Yu Yang 已提交
558 559 560 561 562
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
}

563
void MultiDevSSAGraphBuilder::InsertDataBalanceOp(
X
Xin Pan 已提交
564
    ir::Graph *result, const std::vector<std::string> &datas) const {
P
peizhilin 已提交
565
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
566
  result->Get<GraphOps>(kGraphOps).emplace_back(new DataBalanceOpHandle(
X
polish  
Xin Pan 已提交
567 568
      result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
F
fengjiayi 已提交
569
#else
X
Xin Pan 已提交
570
  result->Get<GraphOps>(kGraphOps).emplace_back(new DataBalanceOpHandle(
X
polish  
Xin Pan 已提交
571 572
      result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
      local_scopes_, places_));
F
fengjiayi 已提交
573
#endif
X
clean1  
Xin Pan 已提交
574
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
575 576 577 578
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
    for (const std::string &d_name : datas) {
X
Xin Pan 已提交
579
      auto &vars = result->Get<GraphVars>(kGraphVars)[i][d_name];
580
      PADDLE_ENFORCE(!vars.empty());
X
clean1  
Xin Pan 已提交
581
      op_handle->AddInput(vars.back());
X
polish  
Xin Pan 已提交
582 583 584
      auto var = new VarHandle(
          result->CreateEmptyNode(d_name, ir::Node::Type::kVariable),
          vars.size(), i, d_name, p);
585 586 587 588 589 590
      vars.emplace_back(var);
      op_handle->AddOutput(var);
    }
  }
}

X
Xin Pan 已提交
591
int MultiDevSSAGraphBuilder::GetOpDeviceID(
C
chengduo 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
    ir::Node *node,
    const std::unordered_map<std::string, int> &sharded_var_device,
    std::unordered_map<std::string, std::vector<ir::Node *>> *delay_ops) const {
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
    return -1;
  }

  if (!OpHaveRole(*node, framework::OpRole::kOptimize)) {
    return -1;
  }

  auto param_grad = boost::get<std::vector<std::string>>(
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
  int dev_id = GetVarDeviceID(param_grad[1], sharded_var_device);

  if (dev_id == -1) {
    (*delay_ops)[param_grad[1]].push_back(node);
    return -2;
  }
  return dev_id;
}

int MultiDevSSAGraphBuilder::GetOpDeviceID(
    ir::Node *node,
X
Xin Pan 已提交
618
    const std::unordered_map<std::string, int> &sharded_var_device) const {
Y
yuyang18 已提交
619
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
620 621
    return -1;
  }
C
chengduo 已提交
622 623

  if (!OpHaveRole(*node, framework::OpRole::kOptimize)) {
624
    return -1;
C
chengduoZH 已提交
625
  }
626
  auto param_grad = boost::get<std::vector<std::string>>(
X
Xin Pan 已提交
627
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
628 629

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
C
chengduo 已提交
630
  int dev_id = GetVarDeviceID(param_grad[1], sharded_var_device);
X
Xin Pan 已提交
631 632
  PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s, %s]",
                    node->Op()->Type(), param_grad[0], param_grad[1]);
633
  return dev_id;
634 635
}

X
Xin Pan 已提交
636
int MultiDevSSAGraphBuilder::GetVarDeviceID(
C
chengduo 已提交
637
    const std::string &varname,
X
Xin Pan 已提交
638
    const std::unordered_map<std::string, int> &sharded_var_device) const {
X
Xin Pan 已提交
639
  auto got = sharded_var_device.find(varname);
C
chengduo 已提交
640 641 642 643 644 645
  if (got == sharded_var_device.end()) {
    auto pos = varname.find(framework::kNewGradSuffix);
    if (pos != std::string::npos) {
      got = sharded_var_device.find(varname.substr(0, pos));
    }
  }
X
Xin Pan 已提交
646
  return got == sharded_var_device.end() ? -1 : got->second;
C
chengduoZH 已提交
647 648
}

649
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(
650
    ir::Graph *result, const std::string &loss_grad_name,
W
Wu Yi 已提交
651
    ir::Node *out_var_node, proto::VarType::Type dtype) const {
652
  size_t nranks = Get<size_t>("nranks");
Y
Yu Yang 已提交
653
  for (size_t i = 0; i < places_.size(); ++i) {
Y
yuyang18 已提交
654 655
    // Insert ScaleCost OpHandle
    auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]);
X
Xin Pan 已提交
656
    auto *op_handle = new ScaleLossGradOpHandle(
X
polish  
Xin Pan 已提交
657
        result->CreateEmptyNode("scale_loss_grad", ir::Node::Type::kOperation),
658
        nranks, local_scopes_[i], places_[i], dev_ctx, dtype);
X
Xin Pan 已提交
659
    result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
Y
Yu Yang 已提交
660 661 662 663 664 665 666

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

667 668
    CreateOpOutput(result, op_handle,
                   result->CreateVarNode(out_var_node->Var()), places_[i], i);
Y
Yu Yang 已提交
669 670 671
  }
}

X
Xin Pan 已提交
672
void MultiDevSSAGraphBuilder::CreateComputationalOps(ir::Graph *result,
673
                                                     ir::Node *node,
T
typhoonzero 已提交
674 675
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
676 677
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
S
sneaxiy 已提交
678 679
    result->Get<GraphOps>(kGraphOps).emplace_back(new ComputationOpHandle(
        result->CreateOpNode(node->Op()), s, p, scope_idx));
680
    CreateOpHandleIOs(result, node, scope_idx);
Y
Yu Yang 已提交
681 682 683
  }
}

X
Xin Pan 已提交
684
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result,
C
chengduoZH 已提交
685 686
                                                   const std::string &og,
                                                   int dst_dev_id) const {
P
peizhilin 已提交
687
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
688
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
689 690
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
691
#else
X
Xin Pan 已提交
692
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
693 694
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
695
#endif
X
clean1  
Xin Pan 已提交
696
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
C
chengduoZH 已提交
697 698 699

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
700
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
701
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
C
chengduoZH 已提交
702 703
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
704
    op_handle->AddInput(prev_grad);
C
chengduoZH 已提交
705
  }
X
Xin Pan 已提交
706
  auto &vars = result->Get<GraphVars>(kGraphVars)[dst_dev_id][og];
X
polish  
Xin Pan 已提交
707 708 709
  auto var =
      new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                    vars.size(), dst_dev_id, og, places_[dst_dev_id]);
C
chengduoZH 已提交
710 711 712 713 714
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

X
Xin Pan 已提交
715 716 717
int MultiDevSSAGraphBuilder::CreateDistTrainOp(
    ir::Graph *result, ir::Node *node,
    std::unordered_map<std::string, int> *sharded_var_device) const {
Y
Yancey1989 已提交
718
  int op_dev_id = -1;
719 720 721
  std::vector<std::string> input_var_names;
  std::vector<std::string> output_var_names;
  for (ir::Node *input : node->inputs) {
X
Xin Pan 已提交
722
    input_var_names.push_back(input->Name());
723 724
  }
  for (ir::Node *output : node->outputs) {
X
Xin Pan 已提交
725
    output_var_names.push_back(output->Name());
726 727 728
  }

  if (node->Op()->Type() == "split_byref" ||
729 730
      node->Op()->Type() == "split_selected_rows" ||
      node->Op()->Type() == "split_ids") {
X
Xin Pan 已提交
731
    // TODO(paddle-dev): getting the first var is not safe.
C
chengduo 已提交
732
    op_dev_id = GetVarDeviceID(input_var_names[0], *sharded_var_device);
Y
Yancey1989 已提交
733
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
734 735
      op_dev_id = GetAppropriateDeviceID(input_var_names);
      for (auto &varname : input_var_names) {
X
Xin Pan 已提交
736
        sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
737 738
      }
    }
739
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
740
      sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
741
    }
742
  } else if (node->Op()->Type() == "concat") {
C
chengduo 已提交
743
    op_dev_id = GetVarDeviceID(input_var_names[0], *sharded_var_device);
744
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
745
      sharded_var_device->emplace(varname, op_dev_id);
Y
yi.wu 已提交
746
    }
Y
Yancey1989 已提交
747
  } else {
748
    LOG(ERROR) << "got unexpected dist op: " << node->Op()->Type();
W
Wu Yi 已提交
749
    PADDLE_THROW(
Y
Yancey1989 已提交
750 751 752 753 754
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
755 756
                 "can not find right place for distributed op: %s",
                 node->Op()->Type());
Y
Yancey1989 已提交
757

758
  CreateComputationalOp(result, node, op_dev_id);
Y
Yancey1989 已提交
759
  return op_dev_id;
W
Wu Yi 已提交
760 761 762
}

void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
X
clean1  
Xin Pan 已提交
763
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
764 765 766 767 768 769
  for (ir::Node *input : node->inputs) {
    VarHandle *var = nullptr;
    for (int place_offset = 0; place_offset < num_places; ++place_offset) {
      auto &var_holders = result->Get<GraphVars>(kGraphVars)[place_offset];
      auto &var_holder = var_holders[input->Name()];
      if (!var_holder.empty()) {
X
clean1  
Xin Pan 已提交
770
        var = *var_holder.rbegin();
W
Wu Yi 已提交
771 772 773
        op_handle->AddInput(var);
      }
    }
Y
Yancey1989 已提交
774 775 776
  }
}

777
// Create RPC related op handles that connects its in ops and out ops.
X
Xin Pan 已提交
778 779 780
int MultiDevSSAGraphBuilder::CreateRPCOp(
    ir::Graph *result, ir::Node *node,
    std::unordered_map<std::string, int> *sharded_var_device) const {
Y
Yancey1989 已提交
781
  int op_dev_id = -1;
782
  if (node->Op()->Type() == "send") {
X
Xin Pan 已提交
783
    // TODO(paddle-dev): getting the first var is not safe.
C
chengduo 已提交
784
    op_dev_id = GetVarDeviceID(node->inputs[0]->Name(), *sharded_var_device);
X
Xin Pan 已提交
785 786
    PADDLE_ENFORCE(!ir::IsControlDepVar(*node->inputs[0]),
                   "This hack no longer holds, please fix.");
Y
Yancey1989 已提交
787 788 789
    // the variable name which contains .block means it was splited by
    // split_byref op
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
X
Xin Pan 已提交
790
        node->inputs[0]->Name().find(".block") == std::string::npos) {
791 792
      std::vector<std::string> input_var_names;
      for (ir::Node *n : node->inputs) {
X
Xin Pan 已提交
793
        input_var_names.push_back(n->Name());
794
      }
W
Wu Yi 已提交
795 796 797 798
      auto send_param_grad = boost::get<std::vector<std::string>>(
          node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE_EQ(send_param_grad.size(), 2U);
      op_dev_id = GetAppropriateDeviceID({send_param_grad[1]});
M
minqiyang 已提交
799 800
      VLOG(10) << "send grad " << input_var_names[0] << " origin "
               << send_param_grad[1] << " place: " << op_dev_id;
801
      for (auto &varname : input_var_names) {
X
Xin Pan 已提交
802
        sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
803
      }
X
Xin Pan 已提交
804
      sharded_var_device->emplace(send_param_grad[1], op_dev_id);
Y
Yancey1989 已提交
805
    }
806 807 808
  } else if (node->Op()->Type() == "recv") {
    std::vector<std::string> output_var_names;
    for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
809
      output_var_names.push_back(n->Name());
810
    }
W
Wu Yi 已提交
811 812 813
    auto recv_param_grad = boost::get<std::vector<std::string>>(
        node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
    if (recv_param_grad.size() == 2U) {
C
chengduo 已提交
814
      op_dev_id = GetVarDeviceID(recv_param_grad[1], *sharded_var_device);
M
minqiyang 已提交
815 816 817
      VLOG(10) << "recv param " << recv_param_grad[0]
               << " get grad place: " << recv_param_grad[1]
               << " place: " << op_dev_id;
W
Wu Yi 已提交
818 819 820
    } else {
      op_dev_id = GetAppropriateDeviceID(output_var_names);
    }
821
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
822
      sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
823 824
    }
  } else {
W
Wu Yi 已提交
825
    // send_barrier, fetch_barrier will run on place 0;
Y
Yancey1989 已提交
826 827 828 829
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
830
                 node->Op()->Type());
X
Xin Pan 已提交
831
  result->Get<GraphOps>(kGraphOps).emplace_back(new RPCOpHandle(
832 833
      result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
      node->Op()->Type(), places_[op_dev_id]));
Y
fix pe  
Yancey1989 已提交
834

W
Wu Yi 已提交
835 836
  if (node->Op()->Type() == "send") {
    CreateOpHandleIOs(result, node, op_dev_id);
Y
Yancey1989 已提交
837
  } else {
W
Wu Yi 已提交
838 839 840
    // send_barrier, recv, fetch_barrier's inputs are deps var, get them from
    // all places
    auto p = places_[op_dev_id];
X
clean1  
Xin Pan 已提交
841
    auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
842 843
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
Y
Yancey1989 已提交
844

W
Wu Yi 已提交
845 846 847 848
    SetOpInputsAllPlaces(result, node, places_.size());
    for (ir::Node *output : node->outputs) {
      int outvar_dev_id = op_dev_id;
      if (node->Op()->Type() == "fetch_barrier") {
C
chengduo 已提交
849
        outvar_dev_id = GetVarDeviceID(output->Name(), *sharded_var_device);
Q
Qiao Longfei 已提交
850
        PADDLE_ENFORCE_NE(outvar_dev_id, -1, "output name %s", output->Name());
W
Wu Yi 已提交
851 852 853 854 855 856 857 858 859 860 861 862
      }
      p = places_[outvar_dev_id];
      ir::Node *new_node = nullptr;
      if (output->Var()) {
        new_node = result->CreateVarNode(output->Var());
      } else {
        new_node =
            result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
      }
      CreateOpOutput(result, op_handle, new_node, p, outvar_dev_id);
    }
  }
Y
Yancey1989 已提交
863
  return op_dev_id;
Y
Yu Yang 已提交
864 865
}

C
chengduo 已提交
866 867 868 869 870 871 872 873
bool MultiDevSSAGraphBuilder::IsSparseGradient(const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
  if (all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
    return true;
  }
  return false;
}

874
bool MultiDevSSAGraphBuilder::IsScaleLossOp(ir::Node *node) const {
Y
yuyang18 已提交
875
  return boost::get<int>(
876
             node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
877 878 879
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
880
}
Y
Yu Yang 已提交
881 882 883
}  // namespace details
}  // namespace framework
}  // namespace paddle
X
Xin Pan 已提交
884

X
Xin Pan 已提交
885
REGISTER_PASS(multi_devices_pass,
X
Xin Pan 已提交
886 887 888 889
              paddle::framework::details::MultiDevSSAGraphBuilder)
    .RequirePassAttr(paddle::framework::details::kLossVarName)
    .RequirePassAttr(paddle::framework::details::kPlaces)
    .RequirePassAttr(paddle::framework::details::kLocalScopes)
890
    .RequirePassAttr(paddle::framework::details::kStrategy)
891
    .RequirePassAttr(paddle::framework::details::kNRanks);