ContextProjectionOpGpu.cu 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "hl_base.h"
16
#include "ContextProjectionOp.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

namespace paddle {

template <bool padding>
__global__ void KeContextProjectionForward(const real* input,
                                           const int* sequence,
                                           const real* weight,
                                           real* output,
                                           int input_dim,
                                           int context_length,
                                           int context_start,
                                           int begin_pad) {
  int idx = threadIdx.x;
  int block_size = blockDim.x;
  int sequenceId = blockIdx.x;
  int seq_start = sequence[sequenceId];
  int seq_end = sequence[sequenceId+1];
  real value = 0;

  int instances = seq_end - seq_start + context_length - 1;
  output += seq_start * input_dim * context_length;
  input += seq_start * input_dim;
  for (int k = 0; k <= input_dim / block_size; k++) {
    if (idx < input_dim) {
      for (int i = 0; i < instances; i++) {
        // i + context_start;
        if ((i + context_start) < 0) {
          if (padding) {
            value = weight[i * input_dim + idx];
          } else {
            continue;
          }
        } else if ((i + context_start) >= (seq_end - seq_start)) {
          if (padding) {
            value =
              weight[(begin_pad + i + context_start - (seq_end - seq_start)) *
                         input_dim + idx];
          } else {
            continue;
          }
        } else {
          value = input[(i + context_start) * input_dim + idx];
        }

        int outx = (i - context_length) < 0 ? i : (context_length - 1);
        int outy = (i - context_length) < 0 ? 0 : (i - (context_length - 1));
        real* output_r =
          output + outy * input_dim * context_length + outx * input_dim;
        for (int j = outy; j < seq_end - seq_start; j++) {
          output_r[idx] += value;
          if (j - outy == outx) break;
          output_r += (context_length - 1) * input_dim;
        }
      }
    }
    idx += block_size;
  }
}

X
xutianbing 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
/**
 * @brief   Context projection forward.
 *
 * @param[in]   input           input sequence.
 * @param[in]   sequence        sequence index.
 * @param[in]   weight          padding data.
 * @param[out]  output          output sequence.
 * @param[in]   num_sequences    number of sequences.
 * @param[in]   input_dim        input sequence dimension.
 * @param[in]   context_length   context length.
 * @param[in]   context_start    context start.
 * @param[in]   begin_pad        number of extra timesteps added at the
 * beginning.
 *
 */
91 92
void hl_context_projection_forward(const real* input,
                                   const int* sequence,
93
                                   const real* weight,
94
                                   real* output,
X
xutianbing 已提交
95 96 97
                                   size_t num_sequences,
                                   size_t input_dim,
                                   size_t context_length,
98
                                   int context_start,
X
xutianbing 已提交
99
                                   size_t begin_pad) {
100 101 102 103 104 105 106 107 108 109
  CHECK_NOTNULL(input);
  CHECK_NOTNULL(sequence);
  CHECK_NOTNULL(output);

  int block_size = 128;
  int blocks_x = num_sequences;
  int blocks_y = 1;
  dim3 threads(block_size, 1);
  dim3 grid(blocks_x, blocks_y);

110
  if (weight) {
111 112 113 114 115 116 117 118 119 120 121 122
    KeContextProjectionForward<true><<< grid, threads, 0, STREAM_DEFAULT >>>
      (input, sequence, weight, output, input_dim,
       context_length, context_start, begin_pad);
  } else  {
    KeContextProjectionForward<false><<< grid, threads, 0, STREAM_DEFAULT >>>
      (input, sequence, weight, output, input_dim,
       context_length, context_start, begin_pad);
  }
  CHECK_SYNC("hl_context_projection_forward failed");
}

template <>
123 124 125
void ContextProjectionForward<DEVICE_TYPE_GPU>(GpuMatrix& output,
                                               const GpuMatrix& input,
                                               const GpuMatrix& weight,
126
                                               const GpuIVector& sequence,
127 128
                                               size_t context_length,
                                               int context_start,
129
                                               size_t begin_pad) {
130
  hl_context_projection_forward(input.getData(),
131
                                sequence.getData(),
132 133
                                weight ? weight.getData() : nullptr,
                                output.getData(),
134
                                sequence.getSize() - 1,
135
                                input.getWidth(),
136 137
                                context_length,
                                context_start,
138
                                begin_pad);
139 140
}

141
__global__ void KeContextProjectionBackwardData(const real* out_grad,
142 143
                                                const int* sequence,
                                                real* in_grad,
144
                                                size_t input_dim,
145 146 147 148 149 150 151 152 153 154
                                                int context_length,
                                                int context_start) {
  int idx = threadIdx.x;
  int block_size = blockDim.x;
  int sequenceId = blockIdx.x;
  int seq_start = sequence[sequenceId];
  int seq_end = sequence[sequenceId+1];
  real value = 0;

  int instances = seq_end - seq_start + context_length - 1;
155 156
  auto out = const_cast<real*>(out_grad);
  out += seq_start * input_dim * context_length;
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
  in_grad += seq_start * input_dim;
  for (int k = 0; k <= input_dim / block_size; k++) {
    if (idx < input_dim) {
      for (int i = 0; i < instances; i++) {
        if ((i + context_start) < 0) {
          continue;
        } else if ((i + context_start) >= (seq_end - seq_start)) {
          continue;
        } else {
          // value = 0;
          value = in_grad[(i + context_start) * input_dim + idx];
        }

        int outx = (i - context_length) < 0 ? i : (context_length - 1);
        int outy = (i - context_length) < 0 ? 0 : (i - (context_length - 1));
        real* output_r =
173
          out + outy * input_dim * context_length + outx * input_dim;
174 175 176 177 178 179 180 181 182 183 184 185
        for (int j = outy; j < seq_end - seq_start; j++) {
          value += output_r[idx];
          if (j - outy == outx) break;
          output_r += (context_length - 1) * input_dim;
        }
        in_grad[(i + context_start) * input_dim + idx] = value;
      }
    }
    idx += block_size;
  }
}

X
xutianbing 已提交
186 187 188 189 190 191 192 193 194 195 196 197
/**
 * @brief   Context projection backward data.
 *
 * @param[in]   out_grad         output gradient.
 * @param[in]   sequence         sequence index.
 * @param[out]  input_grad       input gradient.
 * @param[in]   num_sequences    number of sequences.
 * @param[in]   input_dim        input sequence dimension.
 * @param[in]   context_length   context length.
 * @param[in]   context_start    context start.
 *
 */
198
void hl_context_projection_backward_data(const real* out_grad,
199 200
                                         const int* sequence,
                                         real* input_grad,
X
xutianbing 已提交
201 202 203
                                         size_t num_sequences,
                                         size_t input_dim,
                                         size_t context_length,
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
                                         int context_start) {
  CHECK_NOTNULL(out_grad);
  CHECK_NOTNULL(sequence);
  CHECK_NOTNULL(input_grad);

  int block_size = 128;
  int blocks_x = num_sequences;
  int blocks_y = 1;
  dim3 threads(block_size, 1);
  dim3 grid(blocks_x, blocks_y);
  KeContextProjectionBackwardData<<< grid, threads, 0, STREAM_DEFAULT >>>
    (out_grad, sequence, input_grad, input_dim, context_length, context_start);
  CHECK_SYNC("hl_context_projection_backward_data failed");
}

template <>
220 221
<<<<<<< HEAD
void ContextProjectionBackwardData<DEVICE_TYPE_GPU>(const GpuMatrix& out_grad,
222
                                                    GpuMatrix& in_grad,
223 224 225
                                                    const GpuIVector& sequence,
                                                    size_t context_length,
                                                    int context_start) {
226
  hl_context_projection_backward_data(out_grad.getData(),
227
                                      sequence.getData(),
228
                                      in_grad.getData(),
229
                                      sequence.getSize() - 1,
230
                                      in_grad.getWidth(),
231 232 233 234 235
                                      context_length,
                                      context_start);
}

template<int THREADS_X, int THREADS_Y>
236
__global__ void KeContextProjectionBackwardWeight(const real* out_grad,
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
                                                  const int* sequence,
                                                  real* w_grad,
                                                  int num_sequences,
                                                  int w_dim,
                                                  int context_length,
                                                  int context_start,
                                                  int begin_pad) {
  __shared__ real sum_s[THREADS_Y][THREADS_X];
  int pad_of_block = (w_dim + THREADS_X - 1) / THREADS_X;
  const int idx = threadIdx.x;
  const int idy = threadIdx.y;
  int padId = blockIdx.x / pad_of_block;
  int weight_idx = idx + THREADS_X * (blockIdx.x % pad_of_block);
  int instanceId;
  real value = 0;
  real* output_r;

  sum_s[idy][idx] = 0.0f;
  if (weight_idx < w_dim) {
    for (int seqId = idy; seqId < num_sequences; seqId += THREADS_Y) {
      int seq_start = sequence[seqId];
      int seq_end = sequence[seqId+1];
259 260
      output_r = const_cast<real*>(out_grad) 
                    + seq_start * w_dim * context_length;
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

      if (context_start < 0) {
        if (padId + context_start < 0) {
          instanceId = padId;
        } else {
          // begin_pad > 0;
          instanceId = (padId - begin_pad) +
            (seq_end - seq_start) - context_start;
        }
      } else {
        if (padId + (seq_end - seq_start) < context_start) {
          continue;
        } else {
          // begin_pad == 0;
          instanceId = padId + (seq_end - seq_start) - context_start;
        }
      }

      int outx = (instanceId - context_length) < 0 ?
                 instanceId : (context_length - 1);
      int outy = (instanceId - context_length) < 0 ?
                 0 : (instanceId - (context_length - 1));
      output_r += outy * w_dim * context_length + outx * w_dim;
      for (int j = outy; j < seq_end - seq_start; j++) {
        value += output_r[weight_idx];
        if (j - outy == outx) break;
        output_r += (context_length - 1) * w_dim;
      }
    }
    sum_s[idy][idx] = value;
  }
  __syncthreads();

  for (int stride = THREADS_Y/2; stride > 0; stride = stride/2) {
    if (idy < stride) {
      sum_s[idy][idx] += sum_s[idy + stride][idx];
    }
    __syncthreads();
  }
  __syncthreads();

  if (weight_idx < w_dim) {
    if (idy == 0) {
      w_grad[padId * w_dim + weight_idx] += sum_s[0][idx];
    }
  }
}

X
xutianbing 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/**
 * @brief   Context projection backward weight.
 *
 * @param[in]   out_grad         output gradient.
 * @param[in]   sequence         sequence index.
 * @param[out]  w_grad           weight gradient.
 * @param[in]   num_sequences    number of sequences.
 * @param[in]   w_dim            input sequence dimension.
 * @param[in]   total_pad        number of extra timesteps.
 * @param[in]   context_length   context length.
 * @param[in]   context_start    context start.
 * @param[in]   begin_pad        number of extra timesteps added at the
 * beginning.
 *
 */
324
void hl_context_projection_backward_weight(const real* out_grad,
325 326
                                           const int* sequence,
                                           real* w_grad,
X
xutianbing 已提交
327 328
                                           size_t num_sequences,
                                           size_t w_dim,
329
                                           size_t total_pad,
X
xutianbing 已提交
330
                                           size_t context_length,
331
                                           int context_start,
X
xutianbing 已提交
332
                                           size_t begin_pad) {
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
  CHECK_NOTNULL(out_grad);
  CHECK_NOTNULL(sequence);
  CHECK_NOTNULL(w_grad);

  int threads_x = 32;
  int threads_y = 32;
  int blocks_x = total_pad * ((w_dim + threads_x - 1) / threads_x);
  dim3 threads(threads_x, threads_y);
  dim3 grid(blocks_x, 1);

  KeContextProjectionBackwardWeight<32, 32>
    <<< grid, threads, 0, STREAM_DEFAULT >>>
    (out_grad, sequence, w_grad, num_sequences, w_dim,
     context_length, context_start, begin_pad);
  CHECK_SYNC("hl_context_projection_backward_weight failed");
}

template <>
351
void ContextProjectionBackwardWeight<DEVICE_TYPE_GPU>(
352
        const GpuMatrix& out_grad,
353
        GpuMatrix& w_grad,
354 355 356 357 358
        const GpuIVector& seq_vec,
        size_t context_length,
        int context_start,
        size_t total_pad,
        size_t begin_pad) {
359
  hl_context_projection_backward_weight(out_grad.getData(),
360
                                        seq_vec.getData(),
361
                                        w_grad.getData(),
362
                                        seq_vec.getSize() - 1,
363
                                        w_grad.getWidth(),
364 365 366 367 368 369
                                        total_pad,
                                        context_length,
                                        context_start,
                                        begin_pad);
}

370
template <>
371
void ContextProjectionBackward<DEVICE_TYPE_GPU>(const GpuMatrix& out_grad,
372 373
                                                GpuMatrix& in_grad,
                                                GpuMatrix& w_grad,
374 375 376 377 378 379 380 381 382
                                                const GpuIVector& sequence,
                                                size_t context_length,
                                                int context_start,
                                                size_t begin_pad,
                                                bool is_padding,
                                                size_t total_pad) {
    if (in_grad) {
        ContextProjectionBackwardData<DEVICE_TYPE_GPU>(
                out_grad,
383 384 385 386 387
                in_grad,
                sequence,
                context_length,
                context_start);
    }
388 389 390
    if (is_padding && w_grad) {
        ContextProjectionBackwardWeight<DEVICE_TYPE_GPU>(
                out_grad,
391 392 393 394 395 396 397 398 399
                w_grad,
                sequence,
                context_length,
                context_start,
                total_pad,
                begin_pad);
  }
}

400
}  // namespace paddle