parallel_executor.cc 18.5 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
C
chengduo 已提交
20
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
21

X
clean  
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
23

P
peizhilin 已提交
24
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
25
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
26
#endif
Y
Yang Yang 已提交
27

Y
yuyang18 已提交
28
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
29
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
30
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
31
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
32
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
33
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
34
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
35

Y
Yu Yang 已提交
36
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
37
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
38
#endif
Y
Yu Yang 已提交
39
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
40 41 42
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");

Y
Yang Yang 已提交
43
namespace paddle {
Y
Yu Yang 已提交
44 45
namespace framework {

Y
Yu Yang 已提交
46
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
47
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
48
static bool gProfileStarted = false;
Y
Yu Yang 已提交
49
#endif
Y
Yu Yang 已提交
50 51 52
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
53
      : places_(places) {
Y
Yu Yang 已提交
54
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
55 56
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
57
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
58 59 60
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
61
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
62 63 64 65
#endif
      });
    }
  }
Y
Yu Yang 已提交
66

67 68 69 70 71 72 73 74 75 76 77
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
78

S
sneaxiy 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92
  std::unique_ptr<ir::Graph> PrepareGCAndRefCnts(
      std::unique_ptr<ir::Graph> graph, size_t max_memory_size);

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
93
      }
S
sneaxiy 已提交
94
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
95 96 97
    }
  }

D
dzhwinter 已提交
98
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
99 100
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
101
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
102
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
103

P
peizhilin 已提交
104
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
105
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
106
#endif
C
chengduoZH 已提交
107 108
  bool own_local_scope_;
  bool use_cuda_;
109
  bool use_all_reduce_;
Y
Yancey1989 已提交
110
  size_t num_parallel_devices_;
S
sneaxiy 已提交
111

S
sneaxiy 已提交
112 113 114 115 116 117
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
118 119
};

S
sneaxiy 已提交
120 121 122 123 124 125 126
std::unique_ptr<ir::Graph> ParallelExecutorPrivate::PrepareGCAndRefCnts(
    std::unique_ptr<ir::Graph> graph, size_t max_memory_size) {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
127
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
128
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
129 130
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
131 132
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
133
      } else {
S
sneaxiy 已提交
134 135
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
136 137
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
138
    } else {
S
sneaxiy 已提交
139
#endif
S
sneaxiy 已提交
140 141 142 143 144 145 146
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
147 148 149 150
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
151
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
152 153
  }

S
sneaxiy 已提交
154
  if (!gcs_.empty()) {
S
sneaxiy 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
    graph = ref_cnt_pass->Apply(std::move(graph));
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
    graph = eager_deletion_pass->Apply(std::move(graph));
    VLOG(10) << "EagerDeletionPass Applied";
D
dzhwinter 已提交
176 177 178 179 180 181 182 183

    if (build_strategy_.memory_early_delete_) {
      auto early_delete_pass =
          ir::PassRegistry::Instance().Get("memory_early_delete_pass");
      early_delete_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
      graph = early_delete_pass->Apply(std::move(graph));
    }
    VLOG(10) << "MemoryEarlyDeletePass Applied.";
S
sneaxiy 已提交
184 185 186 187 188
  }

  return graph;
}

189 190 191 192
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
193
ParallelExecutor::ParallelExecutor(
194
    const std::vector<platform::Place> &places,
195 196
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
197
    Scope *scope, const std::vector<Scope *> &local_scopes,
198
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
199
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
200
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
201
  member_->global_scope_ = scope;
202
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
203
  member_->build_strategy_ = build_strategy;
204 205
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
Y
Yancey1989 已提交
206
  member_->num_parallel_devices_ = num_trainers * places.size();
207 208 209 210 211

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
212 213
  }

Y
Yancey1989 已提交
214
  if (build_strategy.enable_parallel_graph_) {
Y
Yancey1989 已提交
215 216
    PADDLE_ENFORCE(
        member_->use_all_reduce_,
Y
Yancey1989 已提交
217 218
        "build_strategy.reduce should be `AllReduce` if you want to enable"
        "ParallelGraph.");
Y
Yancey1989 已提交
219 220
    PADDLE_ENFORCE(
        member_->use_cuda_,
Y
Yancey1989 已提交
221 222
        "execution_strategy.use_cuda should be True if you want to enable "
        "ParallelGraph.");
223
  }
Y
Yu Yang 已提交
224

225
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
226
  // Create local scopes
227
  if (local_scopes.empty()) {
C
chengduoZH 已提交
228
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
229 230
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
231
      member_->local_scopes_.emplace_back(&scope->NewScope());
232 233
    }
  } else {
C
chengduoZH 已提交
234
    member_->own_local_scope_ = false;
235 236
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
237
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
238
    }
Y
Yu Yang 已提交
239 240
  }

C
chengduoZH 已提交
241
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
242
// Bcast Parameters to all GPUs
P
peizhilin 已提交
243
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduoZH 已提交
244
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
245
    ncclUniqueId *nccl_id = nullptr;
Y
Yancey1989 已提交
246 247 248 249 250
    // nccl collective would broadcast nccl id by gen_nccl_id operator.
    if (nccl_id_var != nullptr) {
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
    }

Y
Yancey1989 已提交
251
    if (build_strategy.enable_parallel_graph_ && places.size() > 1) {
Y
Yancey1989 已提交
252
      if (nccl_id == nullptr) {
Y
Yancey1989 已提交
253 254 255
        nccl_id = new ncclUniqueId();
        PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id));
      }
C
chengduoZH 已提交
256 257
    }
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
Y
Yancey1989 已提交
258
        member_->places_, nccl_id, num_trainers, trainer_id));
Y
Yancey1989 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

/**
if (build_strategy.enable_parallel_graph_ && places.size() > 1) {
  // parallel graph mode should initialize nccl by ncclCommInitRank since
  // it call nccl operator per device per thread.
  if (nccl_id_var == nullptr) {
    nccl_id = new ncclUniqueId();
    PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id));
    *member_->global_scope_->Var(NCCL_ID_VARNAME)
         ->GetMutable<ncclUniqueId>() = *nccl_id;
  } else {
    nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
  }
} else if (nccl_id_var != nullptr) {  // the other executor type.
  // the distributed training with nccl mode would initialize the nccl id in
  // startup_program.
  nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
} else {
  // initlize NCCL by ncclCommInitAll, do not need to intialize the nccl_id.
}

member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
    member_->places_, nccl_id, num_trainers, trainer_id));
**/
C
chengduoZH 已提交
283 284
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
285
#endif
C
chengduoZH 已提交
286 287
  }
  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
288
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
289
  }
Y
Yancey1989 已提交
290
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
291

Y
Yancey1989 已提交
292 293 294
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<std::unique_ptr<ir::Graph>> graphs;
Y
Yancey1989 已提交
295
  member_->num_parallel_devices_ = member_->places_.size() * num_trainers;
P
peizhilin 已提交
296
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
297
  if (build_strategy.enable_parallel_graph_) {
Y
Yancey1989 已提交
298
    for (size_t i = 0; i < member_->places_.size(); ++i) {
Y
Yancey1989 已提交
299 300 301 302
      std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
          main_program, {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, member_->num_parallel_devices_,
          member_->use_cuda_, member_->nccl_ctxs_.get());
Y
Yancey1989 已提交
303 304 305 306
      graphs.push_back(std::move(graph));
    }
  } else {
    std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
307
        main_program, member_->places_, loss_var_name, member_->local_scopes_,
Y
Yancey1989 已提交
308 309
        member_->num_parallel_devices_, member_->use_cuda_,
        member_->nccl_ctxs_.get());
Y
Yancey1989 已提交
310 311
    graphs.push_back(std::move(graph));
  }
C
chengduoZH 已提交
312
#else
Y
Yancey1989 已提交
313 314 315
  std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
      main_program, member_->places_, loss_var_name, member_->local_scopes_,
      member_->num_parallel_devices_, member_->use_cuda_);
Y
Yancey1989 已提交
316
  graphs.push_back(std::move(graph));
Y
Yu Yang 已提交
317
#endif
Y
Yancey1989 已提交
318
  auto max_memory_size = GetEagerDeletionThreshold();
Y
Yancey1989 已提交
319 320
  // TODO(Yancey1989): fix gc failed on ParallelGraph strategy.
  if (max_memory_size >= 0 && !build_strategy.enable_parallel_graph_) {
Y
Yancey1989 已提交
321 322 323 324
    graphs[0] = member_->PrepareGCAndRefCnts(
        std::move(graphs[0]), static_cast<size_t>(max_memory_size));
  }

325 326
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
327 328 329 330 331 332 333 334 335 336 337
  std::vector<details::VariableInfo> var_infos;
  for (auto &graph : graphs) {
    for (auto &node : graph->Nodes()) {
      if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
        var_infos.emplace_back();
        var_infos.back().name_ = node->Var()->Name();
        var_infos.back().type_ = node->Var()->GetType();
        var_infos.back().persistable_ = node->Var()->Persistable();
      }
    }
  }
Y
Yancey1989 已提交
338

W
Wu Yi 已提交
339 340
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Y
Yancey1989 已提交
341
    size_t graph_num = ir::GraphNum(*graphs[0]);
C
chengduo 已提交
342 343 344 345
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Y
Yancey1989 已提交
346
          << ir::GraphNum(*graphs[0])
C
chengduo 已提交
347 348 349 350 351
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
352 353
  }

Y
Yancey1989 已提交
354
  if (build_strategy.enable_parallel_graph_) {
Y
Yancey1989 已提交
355
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
Y
Yancey1989 已提交
356 357
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs)));
Y
yuyang18 已提交
358
  } else {
Y
Yancey1989 已提交
359 360 361 362 363 364 365 366 367
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
          std::move(graphs[0])));
    } else {
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
          std::move(graphs[0])));
    }
C
chengduoZH 已提交
368
  }
Y
yuyang18 已提交
369 370

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
371
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
372
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
373 374
}

Y
Yancey1989 已提交
375
void ParallelExecutor::BCastParamsToDevices(
376
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
377
  // the initializing bcast, all vars would be bcast from device(0).
378
  for (auto &var : vars) {
X
Xin Pan 已提交
379
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
380
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
381 382 383 384
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
385
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
386
      VLOG(3) << "one in var not inited, return!";
387 388
      continue;
    }
389 390
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
391
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
392
      std::vector<void *> buffers;
393 394 395 396 397
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
398

X
Xin Pan 已提交
399
        if (i == 0) {
400 401
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
402
          auto local_scope = member_->local_scopes_[i];
403
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
404
          t->Resize(dims);
405
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
406
        }
407
        buffers.push_back(buffer);
408
      }
409

410 411 412 413 414 415
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
416 417
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
418
        }
419
        member_->nccl_ctxs_->WaitAll();
420
      }
C
chengduoZH 已提交
421 422 423
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
424 425
    } else {
      platform::CPUPlace cpu;
Y
Yancey1989 已提交
426
      for (size_t i = 0; i < member_->places_.size(); ++i) {
X
Xin Pan 已提交
427
        if (i == 0) continue;
Y
Yancey1989 已提交
428

429 430
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
431 432 433 434

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
435 436 437 438 439 440
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
441
      }
Y
Stash  
Yu Yang 已提交
442 443
    }
  }
Y
Yu Yang 已提交
444
}
Y
Yu Yang 已提交
445

Y
Yu Yang 已提交
446 447
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
448 449 450
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
451 452
  }
#endif
Y
Yu Yang 已提交
453

X
Xin Pan 已提交
454
  platform::RecordBlock b(0);
S
sneaxiy 已提交
455 456
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
457
  }
S
sneaxiy 已提交
458 459 460
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
461
}
Y
Yu Yang 已提交
462

Y
Yu Yang 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
482 483 484 485 486
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
487 488
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
489
      auto t =
Y
Yu Yang 已提交
490
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
491 492
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
493 494 495 496
    }
  }
}

497
ParallelExecutor::~ParallelExecutor() {
498 499
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
500
  }
S
sneaxiy 已提交
501
  delete member_;
502 503
}

Y
Yu Yang 已提交
504
}  // namespace framework
Y
Yang Yang 已提交
505
}  // namespace paddle
S
sneaxiy 已提交
506

D
dzhwinter 已提交
507
USE_PASS(memory_early_delete_pass);
S
sneaxiy 已提交
508
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
509
USE_PASS(eager_deletion_pass);