inference_transpiler.py 20.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
X
Xin Pan 已提交
18
import sys
19
import numpy as np
20 21 22
from .. import core
from ..framework import Program
from ..executor import global_scope
23 24


25
class InferenceTranspiler(object):
L
Luo Tao 已提交
26
    '''
27 28 29 30 31 32
    Convert the fluid program to optimized inference program.

    There are several optimizations:

      - fuse convolution and batch normalization
      - fuse batch normalization and relu (MKLDNN only)
L
Luo Tao 已提交
33 34

    Examples:
35

L
Luo Tao 已提交
36 37 38 39 40 41 42 43 44
    .. code-block:: python

        # As InferenceTranspiler will modify the original program,
        # please clone before use it.
        inference_transpiler_program = program.clone()
        t = fluid.InferenceTranspiler()
        t.transpile(inference_transpiler_program, place)
    '''

L
Luo Tao 已提交
45
    def transpile(self, program, place, scope=None):
46
        '''
L
Luo Tao 已提交
47 48 49 50 51 52
        Run the transpiler.

        Args:
            program (Program): program to transpile
            place (Place): inference place
            scope (Scope|None): inference Scope
L
Luo Tao 已提交
53
        '''
X
Xin Pan 已提交
54
        sys.stderr.write('InferenceTranspiler is deprecated.\n')
L
Luo Tao 已提交
55 56 57 58 59 60 61
        if not isinstance(program, Program):
            raise TypeError("program should be as Program type")
        if not isinstance(place, core.CPUPlace) and not isinstance(
                place, core.CUDAPlace):
            raise TypeError("place should be as CPUPlace/CUDAPlace type")
        if scope is None:
            scope = global_scope()
S
sneaxiy 已提交
62
        if not isinstance(scope, core._Scope):
L
Luo Tao 已提交
63
            raise TypeError("scope should be as Scope type or None")
64
        use_mkldnn = bool(os.getenv("FLAGS_use_mkldnn", False))
M
Michal Gallus 已提交
65

66 67 68
        if use_mkldnn:
            self._depthwise_conv_mkldnn(program)

69
        self._fuse_batch_norm(program, place, scope)
70 71
        if use_mkldnn:
            self._fuse_conv_bias_mkldnn(program)
M
Michal Gallus 已提交
72
            self._fuse_conv_relu_mkldnn(program)
73 74 75
            self._fuse_conv_eltwise_mkldnn(program)
            self._fuse_conv_relu_mkldnn(
                program)  # ResNet residual block merging
M
Michal Gallus 已提交
76 77
            self._fuse_bn_relu_mkldnn(program)

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        self._is_test_pass(program)

    def _is_test_pass(self, program):
        '''
        Transpile the program setting is_test = true for all layers and
        inserts is_test attribute to pooling and activation layers.
        As a result some operators might run faster
        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
            if current_op.has_attr("is_test"):
                current_op._set_attr("is_test", True)
            elif current_op.type in [
                    "pool2d", "sigmoid", "logsigmoid", "softshrink", "exp",
                    "brelu", "pow", "leaky_relu", "stanh", "relu", "tanh",
                    "tanh_shrink", "sqrt", "abs", "ceil", "elu", "floor", "cos",
                    "sin", "round", "reciprocal", "hard_shrink", "hard_sigmoid",
                    "relu6", "soft_relu", "swish", "thresholded_relu", "log",
                    "square", "softplus", "softsign"
            ]:
                current_op._set_attr("is_test", True)
            i = i + 1
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    def _depthwise_conv_mkldnn(self, program):
        '''
        Transpile the program by replacing depthwise_conv2d to conv2d for MKLDNN program.
        The result is:
            - before:
                - any_other_op->depthwise_conv->any_other_op
            - after:
                - any_other_op->conv->any_other_op
        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
            if current_op.type == 'depthwise_conv2d':
                current_op.desc.set_type("conv2d")
            i = i + 1

        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()

135 136 137 138
    def _fuse_conv_eltwise_mkldnn(self, program):
        '''
        Transpile the program fusing elementwise_add into conv for MKLDNN
        program. Elementwise add following convolution OP can be fused by adding
139
        'fuse_residual_connection' attribute to convolution OP and replacing its output
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        Tensor with second parameter of elementwise_add.
        The result of fuse is:
            - before:
                - conv->elementwise_add->any_other_op
            - after:
                - conv->any_other_op
        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
            if current_op.type in ['conv2d']:
                next_op = self.block.ops[i + 1]
                if next_op.type == 'elementwise_add':
157 158
                    self._fuse_conv_eltwise(i, current_op, next_op)
                    self.block._remove_op(i + 1)  # Remove old conv
159 160 161 162 163 164 165 166 167
                    self.block._remove_op(i + 1)  # Remove elementwise_add
            i = i + 1
        self._adjust_input()
        self._remove_unused_var()
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()

M
Michal Gallus 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def _fuse_conv_relu_mkldnn(self, program):
        '''
        Transpile the program by fused relu activation for MKLDNN program.
        Relu activation following convolution OP can be fused by adding
        'fuse_relu' attribute to convolution OP.
        The result of fuse is:
            - before:
                - conv->relu->any_other_op
            - after:
                - conv->any_other_op
        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
            if current_op.type in ['conv2d']:
                next_op = self.block.ops[i + 1]
                if next_op.type == 'relu':
189
                    # modify bnorm OP to include relu
K
Krzysztof Binias 已提交
190
                    current_op._set_attr("fuse_relu", True)
191
                    # remove relu OP
M
Michal Gallus 已提交
192 193 194 195 196 197 198
                    self.block._remove_op(i + 1)
            i = i + 1

        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()
199

M
Michal Gallus 已提交
200
    def _fuse_bn_relu_mkldnn(self, program):
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
        '''
        Transpile the program by fused relu activation for MKLDNN program.

        Relu activation following batch norm OP can be fused by adding
        :math:`fuse_with_relu` attribute to batch norm OP.

        The result of fuse is:

        - before:

          - batch_norm->relu->any_other_op

        - after:

          - batch_norm->any_other_op

        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops) - 1:
            current_op = self.block.ops[i]
            if current_op.type in ['batch_norm']:
                next_op = self.block.ops[i + 1]
                if next_op.type == 'relu':
                    # modify bnorm OP to include relu
W
Wu Yi 已提交
229
                    current_op._set_attr("fuse_with_relu", True)
230
                    # remove relu OP
W
Wu Yi 已提交
231
                    self.block._remove_op(i + 1)
232 233 234 235 236 237 238
            i = i + 1

        self._remove_unused_var()
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()
L
Luo Tao 已提交
239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    def _fuse_conv_bias_mkldnn(self, program):
        '''
        Transpile the program by fused convolution and elementwise_add.

        Replace conv2d and elementwise_add ops with a new conv2d op
        based on an old conv2d op and the :math:`Bias` taken from
        elementwise_add.

        For input :math:`X`:

        - Conv process:            :math:`X = input * W`
        - Elementwise_add process: :math` X = X + bias`

        After fuse into one operation:

        .. math::

            X = input * W + bias

        The operator transformation is:

        - before:

          - conv->elementwise_add->any_other_op

        - after:

          - conv->any_other_op

        The transpile stages are:

        1. Extract bias and output variables from elementwise_add.
        2. Extract Input, Weight and attributes from conv op.
        3. Create a new convolution op based on extracted params.
        4. Remove old conv op.
        5. Remove elementwise_add.
        5. Remove unused variables.

        Args:
            program (Program): program to transpile

        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops) - 2:
            current_op = self.block.ops[i]
            next_op = self.block.ops[i + 1]
            # conv2d with bias
            if current_op.type in ['conv2d'] and \
               next_op.type in ['elementwise_add']:
                self._fuse_conv_bias(i, current_op, next_op)
                self.block._remove_op(i + 1)  # Remove old conv
                self.block._remove_op(i + 1)  # Remove elementwise_add
            i = i + 1

        self._remove_unused_var()
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()

W
Wu Yi 已提交
302
    def _fuse_batch_norm(self, program, place, scope):
L
Luo Tao 已提交
303 304
        '''
        Transpile the program by fused batch normalization.
305 306 307

        The batch normalization followed the convolution or fully connected layer
        can be integrated with them. Doing so will give us a forward acceleration,
308
        especially in environments like mobile or embedded.
309

L
Luo Tao 已提交
310 311
        For input :math:`X`:

312 313
        - Conv process:        :math:`X = input * W + bias`
        - Batch norm process:  :math:`X' = (X - mean) / std`
L
Luo Tao 已提交
314
        - Scale Process:       :math:`Y = a * X' + b`
315 316 317

        After fuse into one operation:

L
Luo Tao 已提交
318 319 320 321
        .. math::

            Y &= (input * W + bias - mean) / std * a + b \\\\
              &= input * a * W / std + ((bias - mean) / std * a + b)
322

323
        The operator transformation is:
L
Luo Tao 已提交
324

325
        - before:
L
Luo Tao 已提交
326

327 328
          - conv->batch_norm->any_other_op (bias == 0)
          - conv->elementwise_add->batch_norm->any_other_op (bias != 0)
329 330

        - after:
L
Luo Tao 已提交
331

332
          - conv->elementwise_add->any_other_op
333

334
        The transpile stages are:
L
Luo Tao 已提交
335

336
        1. insert elementwise_add op when bias == 0.
337
        2. fuse the batch_norm's parameters to conv and elementwise_add operators.
338 339 340
        3. remove batch_norm ops which are not used in any other ops.
        4. adjust the input of any_other_op to be the output of elementwise_add operator.
        5. remove unused variables.
341

L
Luo Tao 已提交
342 343 344 345
        Args:
            program (Program): program to transpile
            place (Place): inference place
            scope (Scope): inference Scope
346

347 348 349
        '''
        self.scope = scope
        self.place = place
350
        self.block = program.block(0)
351
        self.input_map = {}  # store the input names should be adjusted
352

353
        i = 0
354
        while i < len(self.block.ops) - 2:
355
            current_op = self.block.ops[i]
356
            # TODO(luotao1): consider only conv2d now. fc would be delt later.
357
            if current_op.type in ['conv2d']:
358 359
                # TODO(luotao1): consider single chain network now.
                # For branch network, we counldn't use block.ops[i + 1] as
L
Luo Tao 已提交
360
                # the judgment condition.
361
                next_op = self.block.ops[i + 1]
362
                # conv2d without bias
363
                if (next_op.type == 'batch_norm'):
364 365 366
                    # insert bias op
                    bias_op = self._insert_bias_op(i + 1, current_op, next_op)
                    # fuse batch_norm
367
                    self._fuse_param(current_op, next_op, bias_op, 0)
368
                    # remove batch_norm_op
W
Wu Yi 已提交
369
                    self.block._remove_op(i + 2)
370
                    i = i + 1
371 372 373 374 375 376 377
                # conv2d with bias, the next_op.type is elementwise_add
                elif (next_op.type == 'elementwise_add'):
                    next_next_op = self.block.ops[i + 2]
                    if (next_next_op.type == 'batch_norm'):
                        # fuse batch_norm
                        self._fuse_param(current_op, next_next_op, next_op, 1)
                        # remove batch_norm_op
W
Wu Yi 已提交
378
                        self.block._remove_op(i + 2)
379
                        i = i + 1
380
            i = i + 1
381
        self._adjust_input()
382
        self._remove_unused_var()
383 384
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
L
Luo Tao 已提交
385
        # And a better solution will be considered later.
L
Luo Tao 已提交
386
        program = program.clone()
387 388 389 390

    # ====================== private transpiler functions =====================
    def _insert_bias_op(self, index, current_op, bn_op):
        '''
391
        Construct elementwise_add operator for adding bias
392
        and insert it into program.
393

394 395 396 397 398 399 400 401 402 403 404
        :param index: insert location of bias_op
        :type index: Int
        :param current_op: current operator (conv or fc)
        :type current_op: Operator
        :param bn_op: batch norm operator
        :type bn_op: Operator
        :return: bias_op
        :rtype: Operator
        '''
        # The input of bias_op is current_op's output and Bias of bn_op
        # The output of bias_op is bn_op's output
405 406 407 408
        x_var = self.block.var(current_op.output("Output")[0])
        y_var = self.block.var(bn_op.input("Bias")[0])
        out_var = self.block.var(bn_op.output("Y")[0])

W
Wu Yi 已提交
409
        bias_op = self.block._insert_op(
410 411 412 413 414 415
            index,
            type="elementwise_add",
            inputs={"X": x_var,
                    "Y": y_var},
            outputs={"Out": out_var},
            attrs={"axis": 1})  # dim_start=1
416 417
        return bias_op

418
    def _fuse_param(self, current_op, bn_op, bias_op, with_bias):
419 420
        '''
        fuse the batch_norm_op' parameters to current_op (conv or fc)
421

422 423 424 425 426 427
        :param current_op: current operator (conv or fc)
        :type current_op: Operator
        :param bn_op: batch norm operator
        :type bn_op: Operator
        :param bias_op: elementwise_add operator for adding bias
        :type bias_op: Operator
428
        :param with_bias: If current operator has bias, with_bias = 1; otherwise 0.
429
        :type with_bias: Int
430 431
        '''

L
Luo Tao 已提交
432 433 434 435 436 437 438 439 440 441 442
        def _update_param(op, old_param_name, new_param):
            # For the sake of remaining the original variables the same as before,
            # create new variables in scope to store the new parameters.
            old_param_name = old_param_name[0]
            old_var = self.block.vars[old_param_name]
            new_param_name = old_param_name + '_fuse_bn'
            new_var = self.block.create_parameter(
                name=new_param_name.encode('ascii'),
                type=old_var.type,
                dtype=old_var.dtype,
                shape=old_var.shape)
W
Wu Yi 已提交
443
            op._rename_input(old_param_name, new_param_name)
L
Luo Tao 已提交
444 445 446 447
            self.scope.var(new_param_name)

            tensor = self.scope.find_var(new_param_name).get_tensor()
            tensor.set(np.array(new_param), self.place)
448 449

        def _load_param(param_name):
L
Luo Tao 已提交
450
            return np.array(self.scope.find_var(param_name[0]).get_tensor())
451 452 453 454 455 456 457 458 459 460 461 462

        bias_bn = _load_param(bn_op.input("Bias"))  #Bias
        scale_bn = _load_param(bn_op.input("Scale"))  #Scale
        mean_bn = _load_param(bn_op.input("Mean"))  #Mean
        var_bn = _load_param(bn_op.input("Variance"))  #Variance

        # TODO(luotao1): consider only conv2d now. fc would be delt later.
        current_param = _load_param(current_op.input("Filter"))
        std_bn = np.float32(np.sqrt(np.add(var_bn, 1e-5)))
        tmp = np.float32(np.divide(scale_bn, std_bn))

        # add bias of batch_norm_op to conv2d
463 464 465 466
        if with_bias:
            bias = _load_param(bias_op.input("Y"))
        else:
            bias = np.zeros(bias_bn.shape)
467 468 469 470 471 472 473 474 475
        bias = np.float32(
            np.add(np.multiply(np.subtract(bias, mean_bn), tmp), bias_bn))

        # re-compute weight of conv2d
        tmp = tmp.reshape(tmp.shape[0], -1)
        dst_param = current_param.reshape((tmp.shape[0], -1))
        dst_param = np.float32(np.multiply(dst_param, tmp))
        dst_param = dst_param.reshape(current_param.shape)

L
Luo Tao 已提交
476 477 478
        # update parameters
        _update_param(current_op, current_op.input("Filter"), dst_param)
        _update_param(bias_op, bias_op.input("Y"), bias)
479

480 481 482
        # collect the renamed input
        self.input_map[bn_op.output("Y")[0]] = bias_op.output("Out")[0]

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
    def _fuse_conv_bias(self, index, conv_op, elementwise_add_op):
        '''
        fuse the conv op with elementwise_add

        :param index: index of the conv_op in ops list
        :type index: Int
        :param conv_op: convolution operator
        :type conv_op: Operator
        :param elementwise_add_op: convolution's bias operator
        :type elementwise_add_op: Operator
        '''

        bias_var = self.block.var(elementwise_add_op.input("Y")[0])
        out_var = self.block.var(elementwise_add_op.output("Out")[0])
        filter_var = self.block.var(conv_op.input("Filter")[0])
        in_var = self.block.var(conv_op.input("Input")[0])
        attrs = {name: conv_op.attr(name) for name in conv_op.attr_names}

        self.block._insert_op(
            index,
            type="conv2d",
            inputs={"Input": in_var,
                    "Filter": filter_var,
                    "Bias": bias_var},
            outputs={"Output": out_var},
            attrs=attrs)

510
    def _fuse_conv_eltwise(self, index, conv_op, eltwise_op):
511 512 513 514 515 516 517 518 519
        '''
        fuse the conv op with elementwise_add

        :param conv_op: convolution operator
        :type conv_op: Operator
        :param eltwise_op: operator adding data from skip connection
        :type eltwise_op: Operator
        '''

520 521 522 523 524 525 526 527 528
        eltwise_input = "X"
        if eltwise_op.input("X")[0] == conv_op.output("Output")[0]:
            eltwise_input = "Y"

        residual_var = self.block.vars[eltwise_op.input(eltwise_input)[0]]
        out_var = self.block.vars[eltwise_op.output("Out")[0]]
        filter_var = self.block.vars[conv_op.input("Filter")[0]]
        in_var = self.block.vars[conv_op.input("Input")[0]]
        bias_var = self.block.vars[conv_op.input("Bias")[0]]
529

530
        conv_op._set_attr("fuse_residual_connection", True)
531 532 533 534 535 536 537 538 539 540 541 542 543
        attrs = {name: conv_op.attr(name) for name in conv_op.attr_names}

        self.block._insert_op(
            index,
            type="conv2d",
            inputs={
                "Input": in_var,
                "Filter": filter_var,
                "Bias": bias_var,
                "ResidualData": residual_var
            },
            outputs={"Output": out_var},
            attrs=attrs)
544

545
    def _adjust_input(self):
546 547 548 549
        for i in range(len(self.block.ops)):
            current_op = self.block.ops[i]
            for input_arg in current_op.input_arg_names:
                if input_arg in self.input_map:
W
Wu Yi 已提交
550 551
                    current_op._rename_input(input_arg,
                                             self.input_map[input_arg])
552

553 554
    def _remove_unused_var(self):
        '''
555
        remove unused varibles in program
556 557
        '''
        args = []
558 559 560 561
        for i in range(len(self.block.ops)):
            current_op = self.block.ops[i]
            args += current_op.input_arg_names
            args += current_op.output_arg_names
562 563
        args = list(set(args))  # unique the input and output arguments

564
        for var in list(self.block.vars.keys()):
565
            if var not in args:
W
Wu Yi 已提交
566
                self.block._remove_var(var)