iou_loss.py 9.3 KB
Newer Older
C
CodesFarmer 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import NumpyArrayInitializer

from paddle import fluid
from ppdet.core.workspace import register, serializable

__all__ = ['IouLoss']


@register
@serializable
class IouLoss(object):
    """
    iou loss, see https://arxiv.org/abs/1908.03851
    loss = 1.0 - iou * iou
    Args:
        loss_weight (float): iou loss weight, default is 2.5
        max_height (int): max height of input to support random shape input
        max_width (int): max width of input to support random shape input
W
wangguanzhong 已提交
38 39
        ciou_term (bool): whether to add ciou_term
        loss_square (bool): whether to square the iou term
C
CodesFarmer 已提交
40
    """
41

W
wangguanzhong 已提交
42 43 44 45 46 47
    def __init__(self,
                 loss_weight=2.5,
                 max_height=608,
                 max_width=608,
                 ciou_term=False,
                 loss_square=True):
C
CodesFarmer 已提交
48 49 50
        self._loss_weight = loss_weight
        self._MAX_HI = max_height
        self._MAX_WI = max_width
W
wangguanzhong 已提交
51 52
        self.ciou_term = ciou_term
        self.loss_square = loss_square
C
CodesFarmer 已提交
53

54 55 56 57 58 59 60 61 62 63 64 65
    def __call__(self,
                 x,
                 y,
                 w,
                 h,
                 tx,
                 ty,
                 tw,
                 th,
                 anchors,
                 downsample_ratio,
                 batch_size,
K
Kaipeng Deng 已提交
66
                 scale_x_y=1.,
L
lxastro 已提交
67
                 ioup=None,
68
                 eps=1.e-10):
C
CodesFarmer 已提交
69 70 71 72 73 74 75 76 77
        '''
        Args:
            x  | y | w | h  ([Variables]): the output of yolov3 for encoded x|y|w|h
            tx |ty |tw |th  ([Variables]): the target of yolov3 for encoded x|y|w|h
            anchors ([float]): list of anchors for current output layer
            downsample_ratio (float): the downsample ratio for current output layer
            batch_size (int): training batch size
            eps (float): the decimal to prevent the denominator eqaul zero
        '''
W
wangguanzhong 已提交
78
        pred = self._bbox_transform(x, y, w, h, anchors, downsample_ratio,
K
Kaipeng Deng 已提交
79
                                    batch_size, False, scale_x_y, eps)
W
wangguanzhong 已提交
80
        gt = self._bbox_transform(tx, ty, tw, th, anchors, downsample_ratio,
K
Kaipeng Deng 已提交
81
                                  batch_size, True, scale_x_y, eps)
W
wangguanzhong 已提交
82 83 84 85 86
        iouk = self._iou(pred, gt, ioup, eps)
        if self.loss_square:
            loss_iou = 1. - iouk * iouk
        else:
            loss_iou = 1. - iouk
L
lxastro 已提交
87 88 89 90
        loss_iou = loss_iou * self._loss_weight

        return loss_iou

W
wangguanzhong 已提交
91 92 93
    def _iou(self, pred, gt, ioup=None, eps=1.e-10):
        x1, y1, x2, y2 = pred
        x1g, y1g, x2g, y2g = gt
C
CodesFarmer 已提交
94 95 96 97 98 99 100 101 102 103 104
        x2 = fluid.layers.elementwise_max(x1, x2)
        y2 = fluid.layers.elementwise_max(y1, y2)

        xkis1 = fluid.layers.elementwise_max(x1, x1g)
        ykis1 = fluid.layers.elementwise_max(y1, y1g)
        xkis2 = fluid.layers.elementwise_min(x2, x2g)
        ykis2 = fluid.layers.elementwise_min(y2, y2g)

        intsctk = (xkis2 - xkis1) * (ykis2 - ykis1)
        intsctk = intsctk * fluid.layers.greater_than(
            xkis2, xkis1) * fluid.layers.greater_than(ykis2, ykis1)
105 106
        unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g
                                                        ) - intsctk + eps
C
CodesFarmer 已提交
107
        iouk = intsctk / unionk
W
wangguanzhong 已提交
108 109 110
        if self.ciou_term:
            ciou = self.get_ciou_term(pred, gt, iouk, eps)
            iouk = iouk - ciou
L
lxastro 已提交
111
        return iouk
C
CodesFarmer 已提交
112

W
wangguanzhong 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    def get_ciou_term(self, pred, gt, iouk, eps):
        x1, y1, x2, y2 = pred
        x1g, y1g, x2g, y2g = gt

        cx = (x1 + x2) / 2
        cy = (y1 + y2) / 2
        w = (x2 - x1) + fluid.layers.cast((x2 - x1) == 0, 'float32')
        h = (y2 - y1) + fluid.layers.cast((y2 - y1) == 0, 'float32')

        cxg = (x1g + x2g) / 2
        cyg = (y1g + y2g) / 2
        wg = x2g - x1g
        hg = y2g - y1g

        # A or B
        xc1 = fluid.layers.elementwise_min(x1, x1g)
        yc1 = fluid.layers.elementwise_min(y1, y1g)
        xc2 = fluid.layers.elementwise_max(x2, x2g)
        yc2 = fluid.layers.elementwise_max(y2, y2g)

        # DIOU term
        dist_intersection = (cx - cxg) * (cx - cxg) + (cy - cyg) * (cy - cyg)
        dist_union = (xc2 - xc1) * (xc2 - xc1) + (yc2 - yc1) * (yc2 - yc1)
        diou_term = (dist_intersection + eps) / (dist_union + eps)
        # CIOU term
        ciou_term = 0
        ar_gt = wg / hg
        ar_pred = w / h
        arctan = fluid.layers.atan(ar_gt) - fluid.layers.atan(ar_pred)
        ar_loss = 4. / np.pi / np.pi * arctan * arctan
        alpha = ar_loss / (1 - iouk + ar_loss + eps)
        alpha.stop_gradient = True
        ciou_term = alpha * ar_loss
        return diou_term + ciou_term

148
    def _bbox_transform(self, dcx, dcy, dw, dh, anchors, downsample_ratio,
K
Kaipeng Deng 已提交
149
                        batch_size, is_gt, scale_x_y, eps):
C
CodesFarmer 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        grid_x = int(self._MAX_WI / downsample_ratio)
        grid_y = int(self._MAX_HI / downsample_ratio)
        an_num = len(anchors) // 2

        shape_fmp = fluid.layers.shape(dcx)
        shape_fmp.stop_gradient = True
        # generate the grid_w x grid_h center of feature map
        idx_i = np.array([[i for i in range(grid_x)]])
        idx_j = np.array([[j for j in range(grid_y)]]).transpose()
        gi_np = np.repeat(idx_i, grid_y, axis=0)
        gi_np = np.reshape(gi_np, newshape=[1, 1, grid_y, grid_x])
        gi_np = np.tile(gi_np, reps=[batch_size, an_num, 1, 1])
        gj_np = np.repeat(idx_j, grid_x, axis=1)
        gj_np = np.reshape(gj_np, newshape=[1, 1, grid_y, grid_x])
        gj_np = np.tile(gj_np, reps=[batch_size, an_num, 1, 1])
        gi_max = self._create_tensor_from_numpy(gi_np.astype(np.float32))
        gi = fluid.layers.crop(x=gi_max, shape=dcx)
        gi.stop_gradient = True
        gj_max = self._create_tensor_from_numpy(gj_np.astype(np.float32))
        gj = fluid.layers.crop(x=gj_max, shape=dcx)
        gj.stop_gradient = True

        grid_x_act = fluid.layers.cast(shape_fmp[3], dtype="float32")
        grid_x_act.stop_gradient = True
        grid_y_act = fluid.layers.cast(shape_fmp[2], dtype="float32")
        grid_y_act.stop_gradient = True
        if is_gt:
            cx = fluid.layers.elementwise_add(dcx, gi) / grid_x_act
            cx.gradient = True
            cy = fluid.layers.elementwise_add(dcy, gj) / grid_y_act
            cy.gradient = True
        else:
            dcx_sig = fluid.layers.sigmoid(dcx)
            dcy_sig = fluid.layers.sigmoid(dcy)
K
Kaipeng Deng 已提交
184
            if (abs(scale_x_y - 1.0) > eps):
185 186
                dcx_sig = scale_x_y * dcx_sig - 0.5 * (scale_x_y - 1)
                dcy_sig = scale_x_y * dcy_sig - 0.5 * (scale_x_y - 1)
K
Kaipeng Deng 已提交
187
            cx = fluid.layers.elementwise_add(dcx_sig, gi) / grid_x_act
C
CodesFarmer 已提交
188 189 190 191 192 193
            cy = fluid.layers.elementwise_add(dcy_sig, gj) / grid_y_act

        anchor_w_ = [anchors[i] for i in range(0, len(anchors)) if i % 2 == 0]
        anchor_w_np = np.array(anchor_w_)
        anchor_w_np = np.reshape(anchor_w_np, newshape=[1, an_num, 1, 1])
        anchor_w_np = np.tile(anchor_w_np, reps=[batch_size, 1, grid_y, grid_x])
194 195
        anchor_w_max = self._create_tensor_from_numpy(
            anchor_w_np.astype(np.float32))
C
CodesFarmer 已提交
196 197 198 199 200 201
        anchor_w = fluid.layers.crop(x=anchor_w_max, shape=dcx)
        anchor_w.stop_gradient = True
        anchor_h_ = [anchors[i] for i in range(0, len(anchors)) if i % 2 == 1]
        anchor_h_np = np.array(anchor_h_)
        anchor_h_np = np.reshape(anchor_h_np, newshape=[1, an_num, 1, 1])
        anchor_h_np = np.tile(anchor_h_np, reps=[batch_size, 1, grid_y, grid_x])
202 203
        anchor_h_max = self._create_tensor_from_numpy(
            anchor_h_np.astype(np.float32))
C
CodesFarmer 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        anchor_h = fluid.layers.crop(x=anchor_h_max, shape=dcx)
        anchor_h.stop_gradient = True
        # e^tw e^th
        exp_dw = fluid.layers.exp(dw)
        exp_dh = fluid.layers.exp(dh)
        pw = fluid.layers.elementwise_mul(exp_dw, anchor_w) / \
            (grid_x_act * downsample_ratio)
        ph = fluid.layers.elementwise_mul(exp_dh, anchor_h) / \
            (grid_y_act * downsample_ratio)
        if is_gt:
            exp_dw.stop_gradient = True
            exp_dh.stop_gradient = True
            pw.stop_gradient = True
            ph.stop_gradient = True

        x1 = cx - 0.5 * pw
        y1 = cy - 0.5 * ph
        x2 = cx + 0.5 * pw
        y2 = cy + 0.5 * ph
        if is_gt:
            x1.stop_gradient = True
            y1.stop_gradient = True
            x2.stop_gradient = True
            y2.stop_gradient = True

        return x1, y1, x2, y2

    def _create_tensor_from_numpy(self, numpy_array):
        paddle_array = fluid.layers.create_parameter(
            attr=ParamAttr(),
            shape=numpy_array.shape,
            dtype=numpy_array.dtype,
            default_initializer=NumpyArrayInitializer(numpy_array))
        paddle_array.stop_gradient = True
        return paddle_array