quantization_pass.py 31.7 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
17
import six
W
WangZhen 已提交
18
from ..... import compat as cpt
W
WangZhen 已提交
19
from .... import core
20
from .... import Executor
21
from ....framework import IrGraph
22
from ....framework import IrNode
23
from ....framework import Program
W
WangZhen 已提交
24 25 26
from ....initializer import Constant
from .... import unique_name

27 28 29 30
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
    'TransformForMobilePass'
]
W
WangZhen 已提交
31

W
WangZhen 已提交
32

33
class QuantizationTransformPass(object):
W
WangZhen 已提交
34
    def __init__(self,
35
                 scope=None,
36
                 place=None,
W
WangZhen 已提交
37 38 39 40
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
41 42
                 window_size=10000,
                 moving_rate=0.9):
W
WangZhen 已提交
43
        """
44
        Convert and rewrite the IrGraph according to weight and
W
WangZhen 已提交
45
        activation quantization type.
46

W
WangZhen 已提交
47
        Args:
48 49 50
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
            type, this pass will create some new parameters. The scope is used to
            initialize these new parameters.
51
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
52
            parameters described above.
W
WangZhen 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65
            weight_bits (int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits (int): quantization bit number for activation.
            activation_quantize_type (str): quantization type for activation,
                now support 'abs_max', 'range_abs_max'. If use 'abs_max' mode,
                the quantization scale will be calculated dynamically each step
                in both training and testing period. If use 'range_abs_max',
                a static quantization scale will be calculated during training
                and used in inference.
            weight_quantize_type (str): quantization type for weights,
                support 'abs_max'. The 'range_abs_max' usually is not used for
                weight, since weights are fixed once the model is well trained.
            window_size (int): the window size for 'range_abs_max' quantization.
66

W
WangZhen 已提交
67 68
        Examples:
        .. code-block:: python
69 70 71 72
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
73
            from paddle.fluid.contrib.slim.graph import IrGraph
74 75
            from paddle.fluid import core

76
            graph = IrGraph(core.Graph(program.desc), for_test=False)
77
            place = fluid.CPUPlace()
78
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
79
            place)
80
            transform_pass.apply(graph)
W
WangZhen 已提交
81
        """
82
        self._scope = scope
83
        self._place = place
84 85
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
W
WangZhen 已提交
86

87
        quant_type = ['abs_max', 'range_abs_max', 'moving_average_abs_max']
W
WangZhen 已提交
88 89 90
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be ",
91 92
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'.",
                str(activation_quantize_type))
W
WangZhen 已提交
93 94 95
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be ",
96 97
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'.",
                str(weight_quantize_type))
W
WangZhen 已提交
98

99 100 101
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
102
        self._moving_rate = moving_rate
W
WangZhen 已提交
103

104 105 106 107
        self._need_initialized = collections.OrderedDict()
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
108
        ]
109 110
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
111

112
    def apply(self, graph):
113 114 115 116 117 118 119 120
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
        """
W
WangZhen 已提交
121
        assert isinstance(graph,
122 123 124
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._need_initialized.clear()
        self._is_test = graph.is_test()
W
WangZhen 已提交
125 126
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
127
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
W
WangZhen 已提交
128 129 130 131 132 133

        def _transform_forward(graph, op):
            for var_node in op.inputs:
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
W
WangZhen 已提交
134
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
135 136
                    else self._activation_bits
                    quant_type = self._weight_quantize_type if var_node.name() \
W
WangZhen 已提交
137
                        in persistable_vars else self._activation_quantize_type
W
WangZhen 已提交
138 139 140 141 142
                    quant_var_node, scale_var_node = self._insert_quant_op(
                        graph, var_node, quant_bits, quant_type)
                    dequant_var_node = self._insert_dequant_op(
                        graph, quant_var_node, scale_var_node, quant_bits)
                    dequantized_vars[var_node.name()] = dequant_var_node
143
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
144 145 146 147 148 149

        def _transform_backward(graph, op):
            no_dequanted_input_vars = True
            for var_node in op.inputs:
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
150
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
151 152 153 154
                    no_dequanted_input_vars = False
            if no_dequanted_input_vars:
                raise ValueError("There is no dequanted inputs for op %s." %
                                 (op.name()))
W
WangZhen 已提交
155

156
        if not self._is_test:
W
WangZhen 已提交
157
            self._create_global_step(graph)
158
        ops = graph.all_op_nodes()
W
WangZhen 已提交
159 160
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
161
        for op in ops:
162
            if op.name() in self._quantizable_ops:
W
WangZhen 已提交
163
                _transform_forward(graph, op)
W
WangZhen 已提交
164 165
        # The loop for renaming the inputs of backward op.
        for op in ops:
166
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
167
                _transform_backward(graph, op)
W
WangZhen 已提交
168

169 170
        if len(self._need_initialized) > 0:
            assert self._scope is not None, \
171
            'The scope cannot be set None when activation_quantize_type equals to range_abs_max.'
172 173
            assert self._place is not None, \
            'The place cannot be set None when activation_quantize_type equals to range_abs_max.'
174
            init_program = Program()
175
            for var_desc, initializer in six.iteritems(self._need_initialized):
W
WangZhen 已提交
176 177 178 179 180 181 182
                var = init_program.global_block().create_var(
                    name=var_desc.name(),
                    shape=var_desc.shape(),
                    dtype=var_desc.dtype(),
                    type=var_desc.type(),
                    lod_level=var_desc.lod_level(),
                    persistable=var_desc.persistable())
183
                initializer(var, init_program.global_block())
184 185
            exe = Executor(self._place)
            exe.run(program=init_program, scope=self._scope)
186 187

        return graph
W
WangZhen 已提交
188

W
WangZhen 已提交
189
    def _create_global_step(self, graph):
190 191
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
192
            counter_name = cpt.to_text('@STEP_COUNTER@')
193
            for node in graph.all_var_nodes():
W
WangZhen 已提交
194
                if node.name() == counter_name:
195 196
                    self._global_step = node
            if self._global_step is None:
197
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
198 199 200 201
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
202
                self._need_initialized[global_step_in.var()] = \
W
WangZhen 已提交
203 204 205
                    Constant(value=0, force_cpu=True)
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
206
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
207 208
                increment_op = graph.create_op_node(
                    op_type='increment',
209 210 211 212 213
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
214 215
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
216 217 218
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
219

W
WangZhen 已提交
220 221 222 223 224 225 226
    def _insert_quant_op(self, graph, var_node, quant_bits, quant_type):
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
            return self._insert_quant_abs_max_op(graph, var_node, quant_bits)
        elif quant_type == 'range_abs_max':
W
WangZhen 已提交
227 228
            return self._insert_quant_range_abs_max_op(graph, var_node,
                                                       quant_bits)
229 230 231
        elif quant_type == 'moving_average_abs_max':
            return self._insert_quant_moving_average_abs_max_op(graph, var_node,
                                                                quant_bits)
W
WangZhen 已提交
232 233 234 235 236 237 238 239 240

    def _insert_quant_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
241 242 243
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
244 245
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
246 247 248
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
249 250
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
251 252 253 254
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
255 256 257
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
258 259 260
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
261 262 263 264 265 266 267 268 269 270
        return quant_var_node, scale_var_node

    def _insert_quant_range_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
271 272 273
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
274

275
        scale_in_node = graph.create_persistable_node(
W
WangZhen 已提交
276 277 278
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
279
            var_dtype=var_node.dtype())
280
        self._need_initialized[scale_in_node.var()] = Constant(value=0.001)
W
WangZhen 已提交
281 282 283 284 285

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

286
        if not self._is_test:
W
WangZhen 已提交
287
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
288
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
289 290
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
291
                shape=[self._window_size],
292
                var_dtype=var_node.dtype())
293 294
            self._need_initialized[scales_node.var()] = Constant(value=0)
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
295 296
            outputs['OutScales'] = scales_node
        attrs = {
297
            'window_size': self._window_size,
W
WangZhen 已提交
298
            'bit_length': quant_bits,
299 300
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
301 302 303 304 305 306 307
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

308 309 310 311
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
312

313 314 315
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
316 317 318

        return quant_var_node, scale_out_node

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node,
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        self._need_initialized[scale_in_node.var()] = Constant(value=0.001)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            self._need_initialized[state_in_node.var()] = Constant(value=1)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            self._need_initialized[accum_in_node.var()] = Constant(value=1)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

W
WangZhen 已提交
387 388 389 390 391 392 393 394
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
395 396 397
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
398 399 400
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
401 402 403 404
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
405 406 407
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
408 409 410
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        return dequant_var_node

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
427
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
428 429
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
430 431 432


class QuantizationFreezePass(object):
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    """
    The freeze pass is used to adjust the quantize operator order, for example:
        1) `activation -> quant -> dequant -> conv2d` will be freezed into
        `activation -> quant -> conv2d -> dequant`
        2) `weight -> quant -> dequant -> conv2d` will be freezed into `weight -> conv2d`,
        and weight will be sacled offline.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
        weight_bits (int): quantization bit number for weights.
        activation_bits (int): quantization bit number for activation.
        weight_quantize_type (str): quantization type for weights, support 'abs_max'.
        The 'range_abs_max' usually is not used for weight, since weights are fixed once the
        model is well trained.
    """

W
WangZhen 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
                 weight_quantize_type='abs_max'):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
        self._fake_quant_op_names = [
467 468
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
            'fake_quantize_moving_average_abs_max'
W
WangZhen 已提交
469 470 471 472 473 474 475
        ]
        self._fake_dequant_op_names = ['fake_dequantize_max_abs']
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
        self._var_scale_map = collections.OrderedDict()

    def apply(self, graph):
476 477 478 479 480 481
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
        """
482 483
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
484 485 486
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
487
                input_arg_name = op_node.input('X')[0]
W
WangZhen 已提交
488 489 490 491 492
                if input_arg_name in persistable_vars:
                    if self._weight_quantize_type == 'abs_max':
                        param = self._load_var(input_arg_name)
                        scale_v = np.max(np.abs(param))
                    else:
493 494
                        scale_v = self._load_var(
                            op_node.output('OutScale')[0])[0]
W
WangZhen 已提交
495 496
                    self._var_scale_map[input_arg_name] = scale_v
                else:
497
                    scale_v = graph.var_node(op_node.output('OutScale')[0])
W
WangZhen 已提交
498 499 500 501 502 503
                    self._var_scale_map[input_arg_name] = scale_v
                if input_arg_name in persistable_vars:
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
                    # quantize weight and restore
                    param_v = self._load_var(input_arg_name)
                    quantized_param_v = self._quant(param_v, scale_v,
W
WangZhen 已提交
504
                                                    self._weight_bits)
W
WangZhen 已提交
505 506
                    self._restore_var(input_arg_name, quantized_param_v)

507
        ops = graph.all_op_nodes()
W
WangZhen 已提交
508 509 510 511 512
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

513
        ops = graph.all_op_nodes()
W
WangZhen 已提交
514 515 516 517 518 519 520 521 522 523 524
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
                self._insert_post_dequant_op(graph, op_node)

        for op_node in ops:
            # insert dequant_op after fc/conv, need to rename inputs of the followed ops
            for var_node in op_node.inputs:
                name = var_node.name()
                if name in self._op_output_rename_map:
                    old_in = graph.var_node(name)
W
WangZhen 已提交
525
                    new_in = self._op_output_rename_map[name]
W
WangZhen 已提交
526 527 528 529
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
530
        return graph
W
WangZhen 已提交
531 532

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
533 534
        k = op_node.output('Out')[0]
        v = op_node.input('X')[0]
W
WangZhen 已提交
535 536 537 538
        if v not in self._op_input_rename_map:
            self._op_input_rename_map[k] = v
        else:
            self._op_input_rename_map[k] = self._op_input_rename_map[v]
W
WangZhen 已提交
539
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
540 541 542 543

    def _insert_post_dequant_op(self, graph, op_node):
        max_range = None
        scale_var_node = None
544
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
W
WangZhen 已提交
545
        for var_node in op_node.inputs:
W
WangZhen 已提交
546 547 548 549
            name = var_node.name()
            if name in self._op_input_rename_map:
                old_in = graph.var_node(name)
                new_in = graph.var_node(self._op_input_rename_map[name])
W
WangZhen 已提交
550
                new_in.clear_outputs()
W
WangZhen 已提交
551 552
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
W
WangZhen 已提交
553
            scale_v = self._var_scale_map[original_var_name]
W
WangZhen 已提交
554 555 556 557 558 559 560 561
            if original_var_name in persistable_vars:
                param_range = (1 << (self._weight_bits - 1)) - 1
                act_range = (1 << (self._activation_bits - 1)) - 1
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
                max_range = param_range * act_range / scale_v
            else:
562
                assert isinstance(scale_v, IrNode)
W
WangZhen 已提交
563 564
                scale_var_node = self._var_scale_map[original_var_name]

W
WangZhen 已提交
565
        if len(op_node.outputs) != 1:
W
WangZhen 已提交
566 567 568
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

W
WangZhen 已提交
569
        output_var_node = op_node.outputs[0]
W
WangZhen 已提交
570 571
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
572 573 574
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
575 576
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
577 578 579 580
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
581 582 583 584 585 586
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
587
        self._op_output_rename_map[output_var_node.name()] = dequant_var_node
W
WangZhen 已提交
588 589 590 591 592
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

593 594 595
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
596 597 598

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
599
        ops = graph.all_op_nodes()
W
WangZhen 已提交
600 601 602 603 604 605
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

606 607 608 609 610 611
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
635
    def _is_float(self, v):
W
WangZhen 已提交
636 637 638
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

W
WangZhen 已提交
639
    def _quant(self, x, scale, num_bits):
W
WangZhen 已提交
640
        return np.round(x / scale * ((1 << (num_bits - 1)) - 1))
641 642 643


class ConvertToInt8Pass(object):
644 645 646 647 648 649 650 651 652
    """
    Convert the weights into int8_t type.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
        8bits weight tensors.
    """

653 654 655 656 657 658 659 660 661 662
    def __init__(self, scope, place):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']

    def apply(self, graph):
663 664 665 666 667 668 669
        """
        Convert weights' tpye of the graph. After that, the data type of the
        graph weigths is int8_t.

        Args:
            graph(IrGraph): the applied graph.
        """
670 671
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
        input_map = {}
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
692
        int8_var_node = graph.create_persistable_node(
693
            name=cpt.to_text(int8_var_node_name),
694 695
            var_type=var_node.type(),
            shape=var_node.shape(),
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
711
        ops = graph.all_op_nodes()
712 713 714 715 716 717
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

718 719 720 721 722 723
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
724 725 726 727
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
728 729 730 731
    """
    This pass is used to convert the freezed graph for paddle-mobile execution.
    """

732 733 734 735 736 737 738
    def __init__(self):
        self._fake_quant_op_names = [
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max'
        ]
        self._fake_dequant_op_names = ['fake_dequantize_max_abs']

    def apply(self, graph):
739 740 741 742 743 744 745 746
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
        """
747
        ops = graph.all_op_nodes()
748 749 750
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
751
                op_node.set_type('quantize')
752 753 754 755 756 757 758
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
759
                op_node.set_type('dequantize')
760 761 762 763 764 765 766 767
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)

        return graph