fcos_head.py 12.6 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Normal, Constant

from ppdet.core.workspace import register
F
Feng Ni 已提交
27 28 29
from ppdet.modeling.layers import ConvNormLayer, MultiClassNMS

__all__ = ['FCOSFeat', 'FCOSHead']
F
Feng Ni 已提交
30 31 32


class ScaleReg(nn.Layer):
F
Feng Ni 已提交
33 34 35 36
    """
    Parameter for scaling the regression outputs.
    """

F
Feng Ni 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    def __init__(self):
        super(ScaleReg, self).__init__()
        self.scale_reg = self.create_parameter(
            shape=[1],
            attr=ParamAttr(initializer=Constant(value=1.)),
            dtype="float32")

    def forward(self, inputs):
        out = inputs * self.scale_reg
        return out


@register
class FCOSFeat(nn.Layer):
    """
    FCOSFeat of FCOS

    Args:
        feat_in (int): The channel number of input Tensor.
        feat_out (int): The channel number of output Tensor.
        num_convs (int): The convolution number of the FCOSFeat.
        norm_type (str): Normalization type, 'bn'/'sync_bn'/'gn'.
        use_dcn (bool): Whether to use dcn in tower or not.
    """

    def __init__(self,
                 feat_in=256,
                 feat_out=256,
                 num_convs=4,
                 norm_type='bn',
                 use_dcn=False):
        super(FCOSFeat, self).__init__()
B
Blake 已提交
69 70
        self.feat_in = feat_in
        self.feat_out = feat_out
F
Feng Ni 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        self.num_convs = num_convs
        self.norm_type = norm_type
        self.cls_subnet_convs = []
        self.reg_subnet_convs = []
        for i in range(self.num_convs):
            in_c = feat_in if i == 0 else feat_out

            cls_conv_name = 'fcos_head_cls_tower_conv_{}'.format(i)
            cls_conv = self.add_sublayer(
                cls_conv_name,
                ConvNormLayer(
                    ch_in=in_c,
                    ch_out=feat_out,
                    filter_size=3,
                    stride=1,
                    norm_type=norm_type,
                    use_dcn=use_dcn,
                    bias_on=True,
89
                    lr_scale=2.))
F
Feng Ni 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102
            self.cls_subnet_convs.append(cls_conv)

            reg_conv_name = 'fcos_head_reg_tower_conv_{}'.format(i)
            reg_conv = self.add_sublayer(
                reg_conv_name,
                ConvNormLayer(
                    ch_in=in_c,
                    ch_out=feat_out,
                    filter_size=3,
                    stride=1,
                    norm_type=norm_type,
                    use_dcn=use_dcn,
                    bias_on=True,
103
                    lr_scale=2.))
F
Feng Ni 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
            self.reg_subnet_convs.append(reg_conv)

    def forward(self, fpn_feat):
        cls_feat = fpn_feat
        reg_feat = fpn_feat
        for i in range(self.num_convs):
            cls_feat = F.relu(self.cls_subnet_convs[i](cls_feat))
            reg_feat = F.relu(self.reg_subnet_convs[i](reg_feat))
        return cls_feat, reg_feat


@register
class FCOSHead(nn.Layer):
    """
    FCOSHead
    Args:
F
Feng Ni 已提交
120
        num_classes (int): Number of classes
F
Feng Ni 已提交
121
        fcos_feat (object): Instance of 'FCOSFeat'
F
Feng Ni 已提交
122 123 124 125
        fpn_stride (list): The stride of each FPN Layer
        prior_prob (float): Used to set the bias init for the class prediction layer
        norm_reg_targets (bool): Normalization the regression target if true
        centerness_on_reg (bool): The prediction of centerness on regression or clssification branch
F
Feng Ni 已提交
126 127 128 129
        num_shift (float): Relative offset between the center of the first shift and the top-left corner of img
        fcos_loss (object): Instance of 'FCOSLoss'
        nms (object): Instance of 'MultiClassNMS'
        trt (bool): Whether to use trt in nms of deploy
F
Feng Ni 已提交
130
    """
F
Feng Ni 已提交
131 132
    __inject__ = ['fcos_feat', 'fcos_loss', 'nms']
    __shared__ = ['num_classes', 'trt']
F
Feng Ni 已提交
133 134 135

    def __init__(self,
                 num_classes=80,
F
Feng Ni 已提交
136
                 fcos_feat='FCOSFeat',
F
Feng Ni 已提交
137 138 139
                 fpn_stride=[8, 16, 32, 64, 128],
                 prior_prob=0.01,
                 norm_reg_targets=True,
F
Feng Ni 已提交
140 141 142 143 144
                 centerness_on_reg=True,
                 num_shift=0.5,
                 fcos_loss='FCOSLoss',
                 nms='MultiClassNMS',
                 trt=False):
F
Feng Ni 已提交
145 146 147 148 149 150 151 152
        super(FCOSHead, self).__init__()
        self.fcos_feat = fcos_feat
        self.num_classes = num_classes
        self.fpn_stride = fpn_stride
        self.prior_prob = prior_prob
        self.fcos_loss = fcos_loss
        self.norm_reg_targets = norm_reg_targets
        self.centerness_on_reg = centerness_on_reg
F
Feng Ni 已提交
153 154 155 156
        self.num_shift = num_shift
        self.nms = nms
        if isinstance(self.nms, MultiClassNMS) and trt:
            self.nms.trt = trt
F
Feng Ni 已提交
157 158 159 160 161 162 163 164 165 166 167

        conv_cls_name = "fcos_head_cls"
        bias_init_value = -math.log((1 - self.prior_prob) / self.prior_prob)
        self.fcos_head_cls = self.add_sublayer(
            conv_cls_name,
            nn.Conv2D(
                in_channels=256,
                out_channels=self.num_classes,
                kernel_size=3,
                stride=1,
                padding=1,
W
wangguanzhong 已提交
168 169
                weight_attr=ParamAttr(initializer=Normal(
                    mean=0., std=0.01)),
F
Feng Ni 已提交
170 171 172 173 174 175 176 177 178 179 180 181
                bias_attr=ParamAttr(
                    initializer=Constant(value=bias_init_value))))

        conv_reg_name = "fcos_head_reg"
        self.fcos_head_reg = self.add_sublayer(
            conv_reg_name,
            nn.Conv2D(
                in_channels=256,
                out_channels=4,
                kernel_size=3,
                stride=1,
                padding=1,
W
wangguanzhong 已提交
182 183 184
                weight_attr=ParamAttr(initializer=Normal(
                    mean=0., std=0.01)),
                bias_attr=ParamAttr(initializer=Constant(value=0))))
F
Feng Ni 已提交
185 186 187 188 189 190 191 192 193 194

        conv_centerness_name = "fcos_head_centerness"
        self.fcos_head_centerness = self.add_sublayer(
            conv_centerness_name,
            nn.Conv2D(
                in_channels=256,
                out_channels=1,
                kernel_size=3,
                stride=1,
                padding=1,
W
wangguanzhong 已提交
195 196 197
                weight_attr=ParamAttr(initializer=Normal(
                    mean=0., std=0.01)),
                bias_attr=ParamAttr(initializer=Constant(value=0))))
F
Feng Ni 已提交
198 199 200 201 202 203 204 205

        self.scales_regs = []
        for i in range(len(self.fpn_stride)):
            lvl = int(math.log(int(self.fpn_stride[i]), 2))
            feat_name = 'p{}_feat'.format(lvl)
            scale_reg = self.add_sublayer(feat_name, ScaleReg())
            self.scales_regs.append(scale_reg)

F
Feng Ni 已提交
206
    def _compute_locations_by_level(self, fpn_stride, feature, num_shift=0.5):
F
Feng Ni 已提交
207 208 209 210 211 212 213 214
        """
        Compute locations of anchor points of each FPN layer
        Args:
            fpn_stride (int): The stride of current FPN feature map
            feature (Tensor): Tensor of current FPN feature map
        Return:
            Anchor points locations of current FPN feature map
        """
F
Feng Ni 已提交
215
        h, w = feature.shape[2], feature.shape[3]
F
Feng Ni 已提交
216 217 218 219
        shift_x = paddle.arange(0, w * fpn_stride, fpn_stride)
        shift_y = paddle.arange(0, h * fpn_stride, fpn_stride)
        shift_x = paddle.unsqueeze(shift_x, axis=0)
        shift_y = paddle.unsqueeze(shift_y, axis=1)
F
Feng Ni 已提交
220 221
        shift_x = paddle.expand(shift_x, shape=[h, w])
        shift_y = paddle.expand(shift_y, shape=[h, w])
F
Feng Ni 已提交
222

F
Feng Ni 已提交
223 224
        shift_x = paddle.reshape(shift_x, shape=[-1])
        shift_y = paddle.reshape(shift_y, shape=[-1])
F
Feng Ni 已提交
225
        location = paddle.stack(
F
Feng Ni 已提交
226
            [shift_x, shift_y], axis=-1) + float(fpn_stride * num_shift)
F
Feng Ni 已提交
227 228
        return location

F
Feng Ni 已提交
229
    def forward(self, fpn_feats, targets=None):
F
Feng Ni 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
        assert len(fpn_feats) == len(
            self.fpn_stride
        ), "The size of fpn_feats is not equal to size of fpn_stride"
        cls_logits_list = []
        bboxes_reg_list = []
        centerness_list = []
        for scale_reg, fpn_stride, fpn_feat in zip(self.scales_regs,
                                                   self.fpn_stride, fpn_feats):
            fcos_cls_feat, fcos_reg_feat = self.fcos_feat(fpn_feat)
            cls_logits = self.fcos_head_cls(fcos_cls_feat)
            bbox_reg = scale_reg(self.fcos_head_reg(fcos_reg_feat))
            if self.centerness_on_reg:
                centerness = self.fcos_head_centerness(fcos_reg_feat)
            else:
                centerness = self.fcos_head_centerness(fcos_cls_feat)
            if self.norm_reg_targets:
                bbox_reg = F.relu(bbox_reg)
F
Feng Ni 已提交
247 248
                if not self.training:
                    # eval or infer
F
Feng Ni 已提交
249 250 251 252 253 254 255
                    bbox_reg = bbox_reg * fpn_stride
            else:
                bbox_reg = paddle.exp(bbox_reg)
            cls_logits_list.append(cls_logits)
            bboxes_reg_list.append(bbox_reg)
            centerness_list.append(centerness)

F
Feng Ni 已提交
256 257 258 259 260 261 262 263 264 265 266
        if self.training:
            losses = {}
            fcos_head_outs = [cls_logits_list, bboxes_reg_list, centerness_list]
            losses_fcos = self.get_loss(fcos_head_outs, targets)
            losses.update(losses_fcos)

            total_loss = paddle.add_n(list(losses.values()))
            losses.update({'loss': total_loss})
            return losses
        else:
            # eval or infer
F
Feng Ni 已提交
267 268
            locations_list = []
            for fpn_stride, feature in zip(self.fpn_stride, fpn_feats):
F
Feng Ni 已提交
269 270
                location = self._compute_locations_by_level(fpn_stride, feature,
                                                            self.num_shift)
F
Feng Ni 已提交
271 272
                locations_list.append(location)

F
Feng Ni 已提交
273 274 275 276 277
            fcos_head_outs = [
                locations_list, cls_logits_list, bboxes_reg_list,
                centerness_list
            ]
            return fcos_head_outs
F
Feng Ni 已提交
278

F
Feng Ni 已提交
279
    def get_loss(self, fcos_head_outs, targets):
F
Feng Ni 已提交
280
        cls_logits, bboxes_reg, centerness = fcos_head_outs
F
Feng Ni 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

        # get labels,reg_target,centerness
        tag_labels, tag_bboxes, tag_centerness = [], [], []
        for i in range(len(self.fpn_stride)):
            k_lbl = 'labels{}'.format(i)
            if k_lbl in targets:
                tag_labels.append(targets[k_lbl])
            k_box = 'reg_target{}'.format(i)
            if k_box in targets:
                tag_bboxes.append(targets[k_box])
            k_ctn = 'centerness{}'.format(i)
            if k_ctn in targets:
                tag_centerness.append(targets[k_ctn])

        losses_fcos = self.fcos_loss(cls_logits, bboxes_reg, centerness,
                                     tag_labels, tag_bboxes, tag_centerness)
        return losses_fcos

    def _post_process_by_level(self, locations, box_cls, box_reg, box_ctn):
        box_scores = F.sigmoid(box_cls).flatten(2).transpose([0, 2, 1])
        box_centerness = F.sigmoid(box_ctn).flatten(2).transpose([0, 2, 1])
        pred_scores = box_scores * box_centerness

        box_reg_ch_last = box_reg.flatten(2).transpose([0, 2, 1])
        box_reg_decoding = paddle.stack(
            [
                locations[:, 0] - box_reg_ch_last[:, :, 0],
                locations[:, 1] - box_reg_ch_last[:, :, 1],
                locations[:, 0] + box_reg_ch_last[:, :, 2],
                locations[:, 1] + box_reg_ch_last[:, :, 3]
            ],
            axis=1)
        pred_boxes = box_reg_decoding.transpose([0, 2, 1])

        return pred_scores, pred_boxes

    def post_process(self, fcos_head_outs, scale_factor):
        locations, cls_logits, bboxes_reg, centerness = fcos_head_outs
        pred_bboxes, pred_scores = [], []

        for pts, cls, reg, ctn in zip(locations, cls_logits, bboxes_reg,
                                      centerness):
            scores, boxes = self._post_process_by_level(pts, cls, reg, ctn)
            pred_scores.append(scores)
            pred_bboxes.append(boxes)
        pred_bboxes = paddle.concat(pred_bboxes, axis=1)
        pred_scores = paddle.concat(pred_scores, axis=1)

        # scale bbox to origin
        scale_y, scale_x = paddle.split(scale_factor, 2, axis=-1)
        scale_factor = paddle.concat(
            [scale_x, scale_y, scale_x, scale_y], axis=-1).reshape([-1, 1, 4])
        pred_bboxes /= scale_factor

        pred_scores = pred_scores.transpose([0, 2, 1])
        bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
        return bbox_pred, bbox_num