task_aligned_assigner_cr.py 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from ppdet.core.workspace import register
from ..bbox_utils import batch_iou_similarity
from .utils import (gather_topk_anchors, check_points_inside_bboxes,
                    compute_max_iou_anchor)

__all__ = ['TaskAlignedAssigner_CR']


@register
class TaskAlignedAssigner_CR(nn.Layer):
    """TOOD: Task-aligned One-stage Object Detection with Center R
    """

    def __init__(self,
                 topk=13,
                 alpha=1.0,
                 beta=6.0,
                 center_radius=None,
                 eps=1e-9):
        super(TaskAlignedAssigner_CR, self).__init__()
        self.topk = topk
        self.alpha = alpha
        self.beta = beta
        self.center_radius = center_radius
        self.eps = eps

    @paddle.no_grad()
    def forward(self,
                pred_scores,
                pred_bboxes,
                anchor_points,
                stride_tensor,
                gt_labels,
                gt_bboxes,
                pad_gt_mask,
                bg_index,
                gt_scores=None):
        r"""This code is based on
            https://github.com/fcjian/TOOD/blob/master/mmdet/core/bbox/assigners/task_aligned_assigner.py

        The assignment is done in following steps
        1. compute alignment metric between all bbox (bbox of all pyramid levels) and gt
        2. select top-k bbox as candidates for each gt
        3. limit the positive sample's center in gt (because the anchor-free detector
           only can predict positive distance)
        4. if an anchor box is assigned to multiple gts, the one with the
           highest iou will be selected.
        Args:
            pred_scores (Tensor, float32): predicted class probability, shape(B, L, C)
            pred_bboxes (Tensor, float32): predicted bounding boxes, shape(B, L, 4)
            anchor_points (Tensor, float32): pre-defined anchors, shape(L, 2), "cxcy" format
            stride_tensor (Tensor, float32): stride of feature map, shape(L, 1)
            gt_labels (Tensor, int64|int32): Label of gt_bboxes, shape(B, n, 1)
            gt_bboxes (Tensor, float32): Ground truth bboxes, shape(B, n, 4)
            pad_gt_mask (Tensor, float32): 1 means bbox, 0 means no bbox, shape(B, n, 1)
            bg_index (int): background index
            gt_scores (Tensor|None, float32) Score of gt_bboxes, shape(B, n, 1)
        Returns:
            assigned_labels (Tensor): (B, L)
            assigned_bboxes (Tensor): (B, L, 4)
            assigned_scores (Tensor): (B, L, C)
        """
        assert pred_scores.ndim == pred_bboxes.ndim
        assert gt_labels.ndim == gt_bboxes.ndim and \
               gt_bboxes.ndim == 3

        batch_size, num_anchors, num_classes = pred_scores.shape
        _, num_max_boxes, _ = gt_bboxes.shape

        # negative batch
        if num_max_boxes == 0:
            assigned_labels = paddle.full(
                [batch_size, num_anchors], bg_index, dtype='int32')
            assigned_bboxes = paddle.zeros([batch_size, num_anchors, 4])
            assigned_scores = paddle.zeros(
                [batch_size, num_anchors, num_classes])
            return assigned_labels, assigned_bboxes, assigned_scores

        # compute iou between gt and pred bbox, [B, n, L]
        ious = batch_iou_similarity(gt_bboxes, pred_bboxes)
        # gather pred bboxes class score
        pred_scores = pred_scores.transpose([0, 2, 1])
        batch_ind = paddle.arange(
            end=batch_size, dtype=gt_labels.dtype).unsqueeze(-1)
        gt_labels_ind = paddle.stack(
            [batch_ind.tile([1, num_max_boxes]), gt_labels.squeeze(-1)],
            axis=-1)
        bbox_cls_scores = paddle.gather_nd(pred_scores, gt_labels_ind)
        # compute alignment metrics, [B, n, L]
        alignment_metrics = bbox_cls_scores.pow(self.alpha) * ious.pow(
            self.beta) * pad_gt_mask

        # select positive sample, [B, n, L]
        if self.center_radius is None:
            # check the positive sample's center in gt, [B, n, L]
            is_in_gts = check_points_inside_bboxes(
                anchor_points, gt_bboxes, sm_use=True)
            # select topk largest alignment metrics pred bbox as candidates
            # for each gt, [B, n, L]
            mask_positive = gather_topk_anchors(
                alignment_metrics, self.topk, topk_mask=pad_gt_mask) * is_in_gts
        else:
            is_in_gts, is_in_center = check_points_inside_bboxes(
                anchor_points,
                gt_bboxes,
                stride_tensor * self.center_radius,
                sm_use=True)
            is_in_gts *= pad_gt_mask
            is_in_center *= pad_gt_mask
            candidate_metrics = paddle.where(
                is_in_gts.sum(-1, keepdim=True) == 0,
                alignment_metrics + is_in_center,
                alignment_metrics)
            mask_positive = gather_topk_anchors(
                candidate_metrics, self.topk,
                topk_mask=pad_gt_mask) * paddle.cast((is_in_center > 0) |
                                                     (is_in_gts > 0), 'float32')

        # if an anchor box is assigned to multiple gts,
        # the one with the highest iou will be selected, [B, n, L]
        mask_positive_sum = mask_positive.sum(axis=-2)
        if mask_positive_sum.max() > 1:
            mask_multiple_gts = (mask_positive_sum.unsqueeze(1) > 1).tile(
                [1, num_max_boxes, 1])
            is_max_iou = compute_max_iou_anchor(ious * mask_positive)
            mask_positive = paddle.where(mask_multiple_gts, is_max_iou,
                                         mask_positive)
            mask_positive_sum = mask_positive.sum(axis=-2)
        assigned_gt_index = mask_positive.argmax(axis=-2)

        # assigned target
        assigned_gt_index = assigned_gt_index + batch_ind * num_max_boxes
        assigned_labels = paddle.gather(
            gt_labels.flatten(), assigned_gt_index.flatten(), axis=0)
        assigned_labels = assigned_labels.reshape([batch_size, num_anchors])
        assigned_labels = paddle.where(
            mask_positive_sum > 0, assigned_labels,
            paddle.full_like(assigned_labels, bg_index))

        assigned_bboxes = paddle.gather(
            gt_bboxes.reshape([-1, 4]), assigned_gt_index.flatten(), axis=0)
        assigned_bboxes = assigned_bboxes.reshape([batch_size, num_anchors, 4])

        assigned_scores = F.one_hot(assigned_labels, num_classes + 1)
        ind = list(range(num_classes + 1))
        ind.remove(bg_index)
        assigned_scores = paddle.index_select(
            assigned_scores, paddle.to_tensor(ind), axis=-1)
        # rescale alignment metrics
        alignment_metrics *= mask_positive
        max_metrics_per_instance = alignment_metrics.max(axis=-1, keepdim=True)
        max_ious_per_instance = (ious * mask_positive).max(axis=-1,
                                                           keepdim=True)
        alignment_metrics = alignment_metrics / (
            max_metrics_per_instance + self.eps) * max_ious_per_instance
        alignment_metrics = alignment_metrics.max(-2).unsqueeze(-1)
        assigned_scores = assigned_scores * alignment_metrics

        return assigned_labels, assigned_bboxes, assigned_scores