README.md 3.9 KB
Newer Older
X
Xin Pan 已提交
1 2
# Overview

X
Xin Pan 已提交
3
Imperative Programming is easier to learn, debug and try new ideas.
X
Xin Pan 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

# Related Works

## Pytorch
https://pytorch.org/

## TensorFlow Eager
https://www.tensorflow.org/guide/eager

# Design

## API
```python
class Layer(object):

  def __call__(inputs):
    # build some parameter once.
    # ...
    return self.apply(inputs):

X
polish  
Xin Pan 已提交
24
  def forward(inputs):
X
Xin Pan 已提交
25 26 27 28 29 30 31 32 33 34 35 36
    # forward logic with paddle operators. backward auto-generated.


class PyLayer(core.PyLayer):

  def __call__(cls, inputs):
    # trace the logic.

  @staticmethod
  def forward(inputs):
    # any forward logic implemented with numpy io.

X
polish  
Xin Pan 已提交
37 38
  @staticmethod
  def backward(inputs):
X
Xin Pan 已提交
39
    # any backward logic implemented with numpy io.
X
Xin Pan 已提交
40 41 42



X
Xin Pan 已提交
43 44 45 46 47
```


## Tracer

X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
Current: Python Variable -> C++ VarBase -> C++ Variable -> C++ Tensor

Longer term.
```python

# Parent class.
class PyVarBase(object):
  pass

# Current python variable.
class Variable(PyVarBase):
  pass

class IVariable(PyVarBase):
  def __init__(self):
    self._ivar = core.VarBase()

  def to(device): pass
  def value(): pass
  def backward(): pass
  def gradient_value(): pass
  # operators to override.
```

X
Xin Pan 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90


```cpp
class Tracer {
 public:
  explicit Tracer(framework::BlockDesc* root_block) : root_block_(root_block) {}

  virtual ~Tracer() {}

  void Trace(OpBase* op,
             const std::map<std::string, std::vector<VarBase*>>& inputs,
             const std::map<std::string, std::vector<VarBase*>>& outputs,
             framework::BlockDesc* block, const bool stop_gradient = false);

  std::vector<VarBase*> PyTrace(OpBase* op, const std::vector<VarBase*>& inputs,
                                bool stop_gradient = false);
};
```

X
Xin Pan 已提交
91 92 93 94 95 96
* Trace forward operations
* Perform simple python level infer and return to user.
* Perform autograd to generate gradients.
* Clear trace.
* Apply gradients with optimizers

X
Xin Pan 已提交
97 98 99 100
## Autodiff

Lots of research already.
https://autodiff-workshop.github.io/
X
Xin Pan 已提交
101 102 103 104 105
https://en.wikipedia.org/wiki/Automatic_differentiation

## Execution Engine

Lazy execution of pushed C++ operations.
X
Xin Pan 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

## Tests

* All op tests run once in static graph, once in imperative mode.

## Refactor

* All function layers with parameters converted to class Layers.
* Models converted to imperative mode.

# Examples

```python
class MyLayer(fluid.imperative.Layer):
    def __init__(self):
        super(MyLayer, self).__init__()

    def forward(self, inputs):
        x = fluid.layers.relu(inputs)
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]


class MyPyLayer(fluid.imperative.PyLayer):
    def __init__(self):
        super(MyPyLayer, self).__init__()

    @staticmethod
    def forward(inputs):
        return np.tanh(inputs[0])

    @staticmethod
    def backward(inputs):
        return np.array(dout) * (1 - np.square(np.array(out)))


class MLP(fluid.imperative.Layer):
    def __init__(self):
        super(MLP, self).__init__()
        self._fc1 = FC(3,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))
        self._fc2 = FC(4,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))

    def forward(self, inputs):
        x = self._fc1(inputs)
        x = self._fc2(x)
        x = fluid.layers.reduce_sum(x)
        return x


 np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
 with fluid.imperative.guard():
     var_inp = fluid.imperative.base.to_variable(np_inp)
     mlp = MLP()
     out = mlp(var_inp)
     dy_out = out._numpy()
     out._backward()
```

X
polish  
Xin Pan 已提交
169

X
Xin Pan 已提交
170 171 172 173
## Save/Load Models

TODO

X
Xin Pan 已提交
174 175 176 177 178 179 180 181
# Plan

2.1,3 fulltime, Can run a few simple models. (Currently, 2 20% engs)

4.1, 4 fulltime, Can run 6 models, Performance 70% Pytorch. Release alpha.

6.1, 5 fulltime, Performance close to Pytorch, can run multi-devices. Release Beta.

X
Xin Pan 已提交
182
8.1, 5 fulltime, Works in general. Update existing models. Can compile to static graph, support more optimizations.
X
Xin Pan 已提交
183

X
Xin Pan 已提交
184
12.1 Done.
X
polish  
Xin Pan 已提交
185

X
Xin Pan 已提交
186 187 188
# Discussion

TODO.