preprocess_op.h 4.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <glog/logging.h>
#include <yaml-cpp/yaml.h>

#include <vector>
#include <string>
#include <utility>
#include <memory>
#include <unordered_map>
C
cnn 已提交
25
#include <iostream>
Q
qingqing01 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39

#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>

namespace PaddleDetection {

// Object for storing all preprocessed data
class ImageBlob {
 public:
  // image width and height
  std::vector<float> im_shape_;
  // Buffer for image data after preprocessing
  std::vector<float> im_data_;
40 41
  // in net data shape(after pad)
  std::vector<int> in_net_shape_;
Q
qingqing01 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  // Evaluation image width and height
  //std::vector<float>  eval_im_size_f_;
  // Scale factor for image size to origin image size
  std::vector<float> scale_factor_;
};

// Abstraction of preprocessing opration class
class PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item, const std::vector<int> image_shape) = 0;
  virtual void Run(cv::Mat* im, ImageBlob* data) = 0;
};

class InitInfo : public PreprocessOp{
 public:
  virtual void Init(const YAML::Node& item, const std::vector<int> image_shape) {}
  virtual void Run(cv::Mat* im, ImageBlob* data);
};

61
class NormalizeImage : public PreprocessOp {
Q
qingqing01 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
 public:
  virtual void Init(const YAML::Node& item, const std::vector<int> image_shape) {
    mean_ = item["mean"].as<std::vector<float>>();
    scale_ = item["std"].as<std::vector<float>>();
    is_scale_ = item["is_scale"].as<bool>();
  }

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  // CHW or HWC
  std::vector<float> mean_;
  std::vector<float> scale_;
  bool is_scale_;
};

class Permute : public PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item, const std::vector<int> image_shape) {}
  virtual void Run(cv::Mat* im, ImageBlob* data);

};

class Resize : public PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item, const std::vector<int> image_shape) {
    interp_ = item["interp"].as<int>();
    //max_size_ = item["target_size"].as<int>();
    keep_ratio_ = item["keep_ratio"].as<bool>();
    target_size_ = item["target_size"].as<std::vector<int>>();
    if (item["keep_ratio"]) {
93
      in_net_shape_ = image_shape;
Q
qingqing01 已提交
94 95 96 97 98 99 100 101 102 103 104 105
    }
 }

  // Compute best resize scale for x-dimension, y-dimension
  std::pair<float, float> GenerateScale(const cv::Mat& im);

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  int interp_;
  bool keep_ratio_;
  std::vector<int> target_size_;
106
  std::vector<int> in_net_shape_;
Q
qingqing01 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
};

// Models with FPN need input shape % stride == 0
class PadStride : public PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item, const std::vector<int> image_shape) {
    stride_ = item["stride"].as<int>();
  }

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  int stride_;
};

class Preprocessor {
 public:
  void Init(const YAML::Node& config_node, const std::vector<int> image_shape) {
    // initialize image info at first
    ops_["InitInfo"] = std::make_shared<InitInfo>();
    for (const auto& item : config_node) {
      auto op_name = item["type"].as<std::string>();

      ops_[op_name] = CreateOp(op_name);
      ops_[op_name]->Init(item, image_shape);
    }
  }

  std::shared_ptr<PreprocessOp> CreateOp(const std::string& name) {
136
    if (name == "Resize") {
Q
qingqing01 已提交
137
      return std::make_shared<Resize>();
138
    } else if (name == "Permute") {
Q
qingqing01 已提交
139
      return std::make_shared<Permute>();
140 141 142 143
    } else if (name == "NormalizeImage") {
      return std::make_shared<NormalizeImage>();
    } else if (name == "PadStride") {
      // use PadStride instead of PadBatch
Q
qingqing01 已提交
144 145
      return std::make_shared<PadStride>();
    }
C
cnn 已提交
146
    std::cerr << "can not find function of OP: " << name << " and return: nullptr" << std::endl;
Q
qingqing01 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160
    return nullptr;
  }

  void Run(cv::Mat* im, ImageBlob* data);

 public:
  static const std::vector<std::string> RUN_ORDER;

 private:
  std::unordered_map<std::string, std::shared_ptr<PreprocessOp>> ops_;
};

}  // namespace PaddleDetection