test_warpctc_op.py 8.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yiqun Liu 已提交
15 16 17 18 19 20
import sys
import unittest
import numpy as np
from op_test import OpTest
from test_softmax_op import stable_softmax

21 22
CUDA_BLOCK_SIZE = 512

Y
Yiqun Liu 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

class CTCForward(object):
    def __init__(self, softmax, softmax_lod, labels, labels_lod, blank,
                 norm_by_times):
        self.softmax = softmax
        self.softmax_lod = softmax_lod
        assert labels.shape[1] == 1
        self.labels = labels
        self.labels_lod = labels_lod
        self.blank = blank
        self.norm_by_times = norm_by_times

        self.level = 0
        self.num_classes = softmax.shape[1]
        self.batch_size = len(softmax_lod[self.level]) - 1
        assert self.batch_size == len(labels_lod[self.level]) - 1

        self.loss = np.zeros([self.batch_size, 1], dtype="float32")
        self.gradient = np.zeros(self.softmax.shape, dtype="float32")

        # float64
        self.EXP_MAX = sys.float_info.max
        self.EXP_MIN = sys.float_info.min
        self.LOG_ZERO = np.log(self.EXP_MIN)
        self.LOG_INFINITY = np.log(self.EXP_MAX)

    def safe_exp(self, x):
        if x <= self.LOG_ZERO:
            return 0.0
        if x >= self.LOG_INFINITY:
            return self.EXP_MAX
        return np.exp(x)

    def safe_log(self, x):
        if x <= self.EXP_MIN:
            return self.LOG_ZERO
        return np.log(x)

    # x = lna and y = lnb are in log scale, ln(a / b) = lna - lnb
    def log_div(self, x, y):
        res = x - y
        if res <= self.LOG_ZERO:
            return self.LOG_ZERO
        if res >= self.LOG_INFINITY:
            return self.LOG_INFINITY
        return res

    # x = lna and y = lnb are in log scale, ln(a * b) = lna + lnb
    def log_mul(self, x, y):
        res = x + y
        if res <= self.LOG_ZERO:
            return self.LOG_ZERO
        if res >= self.LOG_INFINITY:
            return self.LOG_INFINITY
        return res

    # x = lna and y = lnb are in log scale,
    # ln(a + b) = lna + ln(1 + exp(lnb - lna)), where b > a
    def log_add(self, x, y):
        if x < y:
            t = y
            y = x
            x = t
        return x + self.safe_log(1 + self.safe_exp(y - x))

    def segment_range(self, time, total_times, total_segments):
        start = max(0, total_segments - (2 * (total_times - time)))
        end = min(total_segments, 2 * (time + 1))
        return start, end

    def forward_a_sequence(self, softmax_a_sequence, labels_a_sequence):
        total_times = softmax_a_sequence.shape[0]
        total_segments = labels_a_sequence.shape[0] * 2 + 1

        required_times = labels_a_sequence.shape[0]
        old_label = -1
        for i in range(labels_a_sequence.shape[0]):
            # two contingous labels with the same value
            if labels_a_sequence[i, 0] == old_label:
                required_times = required_times + 1
            old_label = labels_a_sequence[i, 0]

        if total_times < required_times:
            return 0

        # calculate the forward and backward variables,
        # reference Chapter 7.3 of "Alex Grave, Supervised Sequence
        # Labelling with Recurrent Neural Networks"
        log_acts = np.zeros([total_times, self.num_classes], dtype="float32")
        for i in range(total_times):
            for j in range(self.num_classes):
                log_acts[i, j] = self.safe_log(softmax_a_sequence[i, j])

        # calculate the forward variables
        forward_vars = np.zeros([total_times, total_segments], dtype="float32")
        for i in range(total_times):
            for j in range(total_segments):
                forward_vars[i, j] = self.LOG_ZERO

        for i in range(total_times):
            # dp initialization at t0
            if i == 0:
                forward_vars[i, 0] = log_acts[0, self.blank]
                if total_segments > 1:
                    forward_vars[i, 1] = log_acts[0, labels_a_sequence[i, 0]]
                continue

            # dp from t1
            start, end = self.segment_range(i, total_times, total_segments)
            for k in range(end - start):
                j = k + start
                if j & 1 == 1:
                    label_idx = j / 2
                    label_val = labels_a_sequence[label_idx, 0]
                    fv = self.log_add(forward_vars[i - 1, j],
                                      forward_vars[i - 1, j - 1])
                    if j > 1 and label_val != labels_a_sequence[label_idx - 1,
                                                                0]:
                        fv = self.log_add(fv, forward_vars[i - 1, j - 2])
                    fv = self.log_mul(fv, log_acts[i, label_val])
                else:
                    fv = forward_vars[i - 1, j]
                    if j > 0:
                        fv = self.log_add(fv, forward_vars[i - 1, j - 1])
                    fv = self.log_mul(fv, log_acts[i, self.blank])
                forward_vars[i, j] = fv

        # sum the last two value as log_prob
        log_prob = forward_vars[total_times - 1, total_segments - 1]
        if total_segments > 1:
            log_prob = self.log_add(
                log_prob, forward_vars[total_times - 1, total_segments - 2])

        return -log_prob

    def forward(self):
        for i in range(self.batch_size):
            softmax_start_i = self.softmax_lod[self.level][i]
            softmax_end_i = self.softmax_lod[self.level][i + 1]
            labels_start_i = self.labels_lod[self.level][i]
            labels_end_i = self.labels_lod[self.level][i + 1]

            softmax_a_sequence = self.softmax[softmax_start_i:softmax_end_i, :]
            labels_a_sequence = self.labels[labels_start_i:labels_end_i, :]
            self.loss[i] = self.forward_a_sequence(softmax_a_sequence,
                                                   labels_a_sequence)
        return self.loss


class TestWarpCTCOp(OpTest):
173 174 175 176 177 178 179 180
    def config(self):
        self.batch_size = 4
        self.num_classes = 8
        self.logits_lod = [[0, 4, 5, 8, 11]]
        self.labels_lod = [[0, 3, 4, 8, 12]]
        self.blank = self.num_classes - 1
        self.norm_by_times = False

Y
Yiqun Liu 已提交
181 182
    def setUp(self):
        self.op_type = "warpctc"
183
        self.config()
Y
Yiqun Liu 已提交
184

185 186 187
        logits = np.random.uniform(
            0.1, 1.0,
            [self.logits_lod[0][-1], self.num_classes]).astype("float32")
Y
Yiqun Liu 已提交
188 189
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
190 191
        labels = np.random.randint(
            0, self.num_classes - 1, [self.labels_lod[0][-1], 1], dtype="int32")
Y
Yiqun Liu 已提交
192

193 194
        ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod,
                         self.blank, self.norm_by_times)
Y
Yiqun Liu 已提交
195 196 197
        loss = ctc.forward()

        max_sequence_length = 0
198 199 200 201
        for i in range(self.batch_size):
            max_sequence_length = max(
                max_sequence_length,
                self.logits_lod[0][i + 1] - self.logits_lod[0][i])
202
        self.gradient = np.zeros(
203 204
            [max_sequence_length, self.batch_size, self.num_classes],
            dtype="float32")
Y
Yiqun Liu 已提交
205 206

        self.inputs = {
207 208
            "Logits": (logits, self.logits_lod),
            "Label": (labels, self.labels_lod)
Y
Yiqun Liu 已提交
209 210
        }
        self.outputs = {"Loss": loss}
211
        self.attrs = {"blank": self.blank, "norm_by_times": self.norm_by_times}
Y
Yiqun Liu 已提交
212 213 214 215

    def test_check_output(self):
        self.check_output()

W
wanghaoshuang 已提交
216
    def test_check_grad(self):
217
        self.outputs['WarpCTCGrad'] = self.gradient
218
        self.check_grad(["Logits"], "Loss", max_relative_error=0.007)
Y
Yiqun Liu 已提交
219

220

221 222 223 224 225 226 227 228
class TestWarpCTCOpCase1(TestWarpCTCOp):
    def config(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
        self.logits_lod = [[0, 4, 5, 8, 11]]
        self.labels_lod = [[0, 3, 4, 8, 12]]
        self.blank = 0
        self.norm_by_times = False
Y
Yiqun Liu 已提交
229 230 231 232


if __name__ == "__main__":
    unittest.main()