batch_operators.py 44.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

M
Mark Ma 已提交
19 20
import typing

Q
qingqing01 已提交
21 22 23 24 25 26
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence

import cv2
G
Guanghua Yu 已提交
27
import math
Q
qingqing01 已提交
28
import numpy as np
W
wangxinxin08 已提交
29
from .operators import register_op, BaseOperator, Resize
W
wangguanzhong 已提交
30
from .op_helper import jaccard_overlap, gaussian2D, gaussian_radius, draw_umich_gaussian
G
Guanghua Yu 已提交
31
from .atss_assigner import ATSSAssigner
W
wangxinxin08 已提交
32
from scipy import ndimage
Q
qingqing01 已提交
33

C
cnn 已提交
34
from ppdet.modeling import bbox_utils
Q
qingqing01 已提交
35
from ppdet.utils.logger import setup_logger
W
wangguanzhong 已提交
36
from ppdet.modeling.keypoint_utils import get_affine_transform, affine_transform
Q
qingqing01 已提交
37 38 39
logger = setup_logger(__name__)

__all__ = [
W
wangguanzhong 已提交
40 41 42 43 44 45 46 47 48 49
    'PadBatch',
    'BatchRandomResize',
    'Gt2YoloTarget',
    'Gt2FCOSTarget',
    'Gt2TTFTarget',
    'Gt2Solov2Target',
    'Gt2SparseRCNNTarget',
    'PadMaskBatch',
    'Gt2GFLTarget',
    'Gt2CenterNetTarget',
Q
qingqing01 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62
]


@register_op
class PadBatch(BaseOperator):
    """
    Pad a batch of samples so they can be divisible by a stride.
    The layout of each image should be 'CHW'.
    Args:
        pad_to_stride (int): If `pad_to_stride > 0`, pad zeros to ensure
            height and width is divisible by `pad_to_stride`.
    """

63
    def __init__(self, pad_to_stride=0):
Q
qingqing01 已提交
64 65 66
        super(PadBatch, self).__init__()
        self.pad_to_stride = pad_to_stride

W
wangxinxin08 已提交
67
    def __call__(self, samples, context=None):
Q
qingqing01 已提交
68 69 70 71 72 73
        """
        Args:
            samples (list): a batch of sample, each is dict.
        """
        coarsest_stride = self.pad_to_stride

M
Mark Ma 已提交
74 75 76 77 78 79 80
        # multi scale input is nested list
        if isinstance(samples, typing.Sequence) and len(samples) > 0 and isinstance(samples[0], typing.Sequence):
            inner_samples = samples[0]
        else:
            inner_samples = samples

        max_shape = np.array([data['image'].shape for data in inner_samples]).max(
Q
qingqing01 已提交
81 82 83 84 85 86 87
            axis=0)
        if coarsest_stride > 0:
            max_shape[1] = int(
                np.ceil(max_shape[1] / coarsest_stride) * coarsest_stride)
            max_shape[2] = int(
                np.ceil(max_shape[2] / coarsest_stride) * coarsest_stride)

M
Mark Ma 已提交
88
        for data in inner_samples:
Q
qingqing01 已提交
89 90 91 92 93 94
            im = data['image']
            im_c, im_h, im_w = im.shape[:]
            padding_im = np.zeros(
                (im_c, max_shape[1], max_shape[2]), dtype=np.float32)
            padding_im[:, :im_h, :im_w] = im
            data['image'] = padding_im
W
wangxinxin08 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108
            if 'semantic' in data and data['semantic'] is not None:
                semantic = data['semantic']
                padding_sem = np.zeros(
                    (1, max_shape[1], max_shape[2]), dtype=np.float32)
                padding_sem[:, :im_h, :im_w] = semantic
                data['semantic'] = padding_sem
            if 'gt_segm' in data and data['gt_segm'] is not None:
                gt_segm = data['gt_segm']
                padding_segm = np.zeros(
                    (gt_segm.shape[0], max_shape[1], max_shape[2]),
                    dtype=np.uint8)
                padding_segm[:, :im_h, :im_w] = gt_segm
                data['gt_segm'] = padding_segm

C
cnn 已提交
109 110 111 112 113 114
            if 'gt_rbox2poly' in data and data['gt_rbox2poly'] is not None:
                # ploy to rbox
                polys = data['gt_rbox2poly']
                rbox = bbox_utils.poly2rbox(polys)
                data['gt_rbox'] = rbox

Q
qingqing01 已提交
115 116 117 118
        return samples


@register_op
W
wangxinxin08 已提交
119
class BatchRandomResize(BaseOperator):
Q
qingqing01 已提交
120
    """
W
wangxinxin08 已提交
121
    Resize image to target size randomly. random target_size and interpolation method
Q
qingqing01 已提交
122
    Args:
W
wangxinxin08 已提交
123 124 125 126 127
        target_size (int, list, tuple): image target size, if random size is True, must be list or tuple
        keep_ratio (bool): whether keep_raio or not, default true
        interp (int): the interpolation method
        random_size (bool): whether random select target size of image
        random_interp (bool): whether random select interpolation method
Q
qingqing01 已提交
128 129
    """

W
wangxinxin08 已提交
130 131 132 133 134 135 136 137
    def __init__(self,
                 target_size,
                 keep_ratio,
                 interp=cv2.INTER_NEAREST,
                 random_size=True,
                 random_interp=False):
        super(BatchRandomResize, self).__init__()
        self.keep_ratio = keep_ratio
Q
qingqing01 已提交
138 139 140 141 142 143
        self.interps = [
            cv2.INTER_NEAREST,
            cv2.INTER_LINEAR,
            cv2.INTER_AREA,
            cv2.INTER_CUBIC,
            cv2.INTER_LANCZOS4,
W
wangxinxin08 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157
        ]
        self.interp = interp
        assert isinstance(target_size, (
            int, Sequence)), "target_size must be int, list or tuple"
        if random_size and not isinstance(target_size, list):
            raise TypeError(
                "Type of target_size is invalid when random_size is True. Must be List, now is {}".
                format(type(target_size)))
        self.target_size = target_size
        self.random_size = random_size
        self.random_interp = random_interp

    def __call__(self, samples, context=None):
        if self.random_size:
158 159
            index = np.random.choice(len(self.target_size))
            target_size = self.target_size[index]
W
wangxinxin08 已提交
160 161 162 163 164 165 166 167 168 169
        else:
            target_size = self.target_size

        if self.random_interp:
            interp = np.random.choice(self.interps)
        else:
            interp = self.interp

        resizer = Resize(target_size, keep_ratio=self.keep_ratio, interp=interp)
        return resizer(samples, context=context)
Q
qingqing01 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191


@register_op
class Gt2YoloTarget(BaseOperator):
    """
    Generate YOLOv3 targets by groud truth data, this operator is only used in
    fine grained YOLOv3 loss mode
    """

    def __init__(self,
                 anchors,
                 anchor_masks,
                 downsample_ratios,
                 num_classes=80,
                 iou_thresh=1.):
        super(Gt2YoloTarget, self).__init__()
        self.anchors = anchors
        self.anchor_masks = anchor_masks
        self.downsample_ratios = downsample_ratios
        self.num_classes = num_classes
        self.iou_thresh = iou_thresh

W
wangxinxin08 已提交
192
    def __call__(self, samples, context=None):
Q
qingqing01 已提交
193 194 195 196 197 198 199 200
        assert len(self.anchor_masks) == len(self.downsample_ratios), \
            "anchor_masks', and 'downsample_ratios' should have same length."

        h, w = samples[0]['image'].shape[1:3]
        an_hw = np.array(self.anchors) / np.array([[w, h]])
        for sample in samples:
            gt_bbox = sample['gt_bbox']
            gt_class = sample['gt_class']
W
wangxinxin08 已提交
201 202 203
            if 'gt_score' not in sample:
                sample['gt_score'] = np.ones(
                    (gt_bbox.shape[0], 1), dtype=np.float32)
Q
qingqing01 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
            gt_score = sample['gt_score']
            for i, (
                    mask, downsample_ratio
            ) in enumerate(zip(self.anchor_masks, self.downsample_ratios)):
                grid_h = int(h / downsample_ratio)
                grid_w = int(w / downsample_ratio)
                target = np.zeros(
                    (len(mask), 6 + self.num_classes, grid_h, grid_w),
                    dtype=np.float32)
                for b in range(gt_bbox.shape[0]):
                    gx, gy, gw, gh = gt_bbox[b, :]
                    cls = gt_class[b]
                    score = gt_score[b]
                    if gw <= 0. or gh <= 0. or score <= 0.:
                        continue

                    # find best match anchor index
                    best_iou = 0.
                    best_idx = -1
                    for an_idx in range(an_hw.shape[0]):
                        iou = jaccard_overlap(
                            [0., 0., gw, gh],
                            [0., 0., an_hw[an_idx, 0], an_hw[an_idx, 1]])
                        if iou > best_iou:
                            best_iou = iou
                            best_idx = an_idx

                    gi = int(gx * grid_w)
                    gj = int(gy * grid_h)

                    # gtbox should be regresed in this layes if best match 
                    # anchor index in anchor mask of this layer
                    if best_idx in mask:
                        best_n = mask.index(best_idx)

                        # x, y, w, h, scale
                        target[best_n, 0, gj, gi] = gx * grid_w - gi
                        target[best_n, 1, gj, gi] = gy * grid_h - gj
                        target[best_n, 2, gj, gi] = np.log(
                            gw * w / self.anchors[best_idx][0])
                        target[best_n, 3, gj, gi] = np.log(
                            gh * h / self.anchors[best_idx][1])
                        target[best_n, 4, gj, gi] = 2.0 - gw * gh

                        # objectness record gt_score
                        target[best_n, 5, gj, gi] = score

                        # classification
                        target[best_n, 6 + cls, gj, gi] = 1.

                    # For non-matched anchors, calculate the target if the iou 
                    # between anchor and gt is larger than iou_thresh
                    if self.iou_thresh < 1:
                        for idx, mask_i in enumerate(mask):
                            if mask_i == best_idx: continue
                            iou = jaccard_overlap(
                                [0., 0., gw, gh],
                                [0., 0., an_hw[mask_i, 0], an_hw[mask_i, 1]])
W
wangxinxin08 已提交
262 263
                            if iou > self.iou_thresh and target[idx, 5, gj,
                                                                gi] == 0.:
Q
qingqing01 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
                                # x, y, w, h, scale
                                target[idx, 0, gj, gi] = gx * grid_w - gi
                                target[idx, 1, gj, gi] = gy * grid_h - gj
                                target[idx, 2, gj, gi] = np.log(
                                    gw * w / self.anchors[mask_i][0])
                                target[idx, 3, gj, gi] = np.log(
                                    gh * h / self.anchors[mask_i][1])
                                target[idx, 4, gj, gi] = 2.0 - gw * gh

                                # objectness record gt_score
                                target[idx, 5, gj, gi] = score

                                # classification
                                target[idx, 6 + cls, gj, gi] = 1.
                sample['target{}'.format(i)] = target
W
wangxinxin08 已提交
279 280 281 282 283

            # remove useless gt_class and gt_score after target calculated
            sample.pop('gt_class')
            sample.pop('gt_score')

Q
qingqing01 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
        return samples


@register_op
class Gt2FCOSTarget(BaseOperator):
    """
    Generate FCOS targets by groud truth data
    """

    def __init__(self,
                 object_sizes_boundary,
                 center_sampling_radius,
                 downsample_ratios,
                 norm_reg_targets=False):
        super(Gt2FCOSTarget, self).__init__()
        self.center_sampling_radius = center_sampling_radius
        self.downsample_ratios = downsample_ratios
        self.INF = np.inf
        self.object_sizes_boundary = [-1] + object_sizes_boundary + [self.INF]
        object_sizes_of_interest = []
        for i in range(len(self.object_sizes_boundary) - 1):
            object_sizes_of_interest.append([
                self.object_sizes_boundary[i], self.object_sizes_boundary[i + 1]
            ])
        self.object_sizes_of_interest = object_sizes_of_interest
        self.norm_reg_targets = norm_reg_targets

    def _compute_points(self, w, h):
        """
        compute the corresponding points in each feature map
        :param h: image height
        :param w: image width
        :return: points from all feature map
        """
        locations = []
        for stride in self.downsample_ratios:
            shift_x = np.arange(0, w, stride).astype(np.float32)
            shift_y = np.arange(0, h, stride).astype(np.float32)
            shift_x, shift_y = np.meshgrid(shift_x, shift_y)
            shift_x = shift_x.flatten()
            shift_y = shift_y.flatten()
            location = np.stack([shift_x, shift_y], axis=1) + stride // 2
            locations.append(location)
        num_points_each_level = [len(location) for location in locations]
        locations = np.concatenate(locations, axis=0)
        return locations, num_points_each_level

    def _convert_xywh2xyxy(self, gt_bbox, w, h):
        """
        convert the bounding box from style xywh to xyxy
        :param gt_bbox: bounding boxes normalized into [0, 1]
        :param w: image width
        :param h: image height
        :return: bounding boxes in xyxy style
        """
        bboxes = gt_bbox.copy()
        bboxes[:, [0, 2]] = bboxes[:, [0, 2]] * w
        bboxes[:, [1, 3]] = bboxes[:, [1, 3]] * h
        bboxes[:, 2] = bboxes[:, 0] + bboxes[:, 2]
        bboxes[:, 3] = bboxes[:, 1] + bboxes[:, 3]
        return bboxes

    def _check_inside_boxes_limited(self, gt_bbox, xs, ys,
                                    num_points_each_level):
        """
        check if points is within the clipped boxes
        :param gt_bbox: bounding boxes
        :param xs: horizontal coordinate of points
        :param ys: vertical coordinate of points
        :return: the mask of points is within gt_box or not
        """
        bboxes = np.reshape(
            gt_bbox, newshape=[1, gt_bbox.shape[0], gt_bbox.shape[1]])
        bboxes = np.tile(bboxes, reps=[xs.shape[0], 1, 1])
        ct_x = (bboxes[:, :, 0] + bboxes[:, :, 2]) / 2
        ct_y = (bboxes[:, :, 1] + bboxes[:, :, 3]) / 2
        beg = 0
        clipped_box = bboxes.copy()
        for lvl, stride in enumerate(self.downsample_ratios):
            end = beg + num_points_each_level[lvl]
            stride_exp = self.center_sampling_radius * stride
            clipped_box[beg:end, :, 0] = np.maximum(
                bboxes[beg:end, :, 0], ct_x[beg:end, :] - stride_exp)
            clipped_box[beg:end, :, 1] = np.maximum(
                bboxes[beg:end, :, 1], ct_y[beg:end, :] - stride_exp)
            clipped_box[beg:end, :, 2] = np.minimum(
                bboxes[beg:end, :, 2], ct_x[beg:end, :] + stride_exp)
            clipped_box[beg:end, :, 3] = np.minimum(
                bboxes[beg:end, :, 3], ct_y[beg:end, :] + stride_exp)
            beg = end
        l_res = xs - clipped_box[:, :, 0]
        r_res = clipped_box[:, :, 2] - xs
        t_res = ys - clipped_box[:, :, 1]
        b_res = clipped_box[:, :, 3] - ys
        clipped_box_reg_targets = np.stack([l_res, t_res, r_res, b_res], axis=2)
        inside_gt_box = np.min(clipped_box_reg_targets, axis=2) > 0
        return inside_gt_box

W
wangxinxin08 已提交
382
    def __call__(self, samples, context=None):
Q
qingqing01 已提交
383 384 385 386 387 388 389 390
        assert len(self.object_sizes_of_interest) == len(self.downsample_ratios), \
            "object_sizes_of_interest', and 'downsample_ratios' should have same length."

        for sample in samples:
            im = sample['image']
            bboxes = sample['gt_bbox']
            gt_class = sample['gt_class']
            # calculate the locations
W
wangxinxin08 已提交
391
            h, w = im.shape[1:3]
Q
qingqing01 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
            points, num_points_each_level = self._compute_points(w, h)
            object_scale_exp = []
            for i, num_pts in enumerate(num_points_each_level):
                object_scale_exp.append(
                    np.tile(
                        np.array([self.object_sizes_of_interest[i]]),
                        reps=[num_pts, 1]))
            object_scale_exp = np.concatenate(object_scale_exp, axis=0)

            gt_area = (bboxes[:, 2] - bboxes[:, 0]) * (
                bboxes[:, 3] - bboxes[:, 1])
            xs, ys = points[:, 0], points[:, 1]
            xs = np.reshape(xs, newshape=[xs.shape[0], 1])
            xs = np.tile(xs, reps=[1, bboxes.shape[0]])
            ys = np.reshape(ys, newshape=[ys.shape[0], 1])
            ys = np.tile(ys, reps=[1, bboxes.shape[0]])

            l_res = xs - bboxes[:, 0]
            r_res = bboxes[:, 2] - xs
            t_res = ys - bboxes[:, 1]
            b_res = bboxes[:, 3] - ys
            reg_targets = np.stack([l_res, t_res, r_res, b_res], axis=2)
            if self.center_sampling_radius > 0:
                is_inside_box = self._check_inside_boxes_limited(
                    bboxes, xs, ys, num_points_each_level)
            else:
                is_inside_box = np.min(reg_targets, axis=2) > 0
            # check if the targets is inside the corresponding level
            max_reg_targets = np.max(reg_targets, axis=2)
            lower_bound = np.tile(
                np.expand_dims(
                    object_scale_exp[:, 0], axis=1),
                reps=[1, max_reg_targets.shape[1]])
            high_bound = np.tile(
                np.expand_dims(
                    object_scale_exp[:, 1], axis=1),
                reps=[1, max_reg_targets.shape[1]])
            is_match_current_level = \
                (max_reg_targets > lower_bound) & \
                (max_reg_targets < high_bound)
            points2gtarea = np.tile(
                np.expand_dims(
                    gt_area, axis=0), reps=[xs.shape[0], 1])
            points2gtarea[is_inside_box == 0] = self.INF
            points2gtarea[is_match_current_level == 0] = self.INF
            points2min_area = points2gtarea.min(axis=1)
            points2min_area_ind = points2gtarea.argmin(axis=1)
            labels = gt_class[points2min_area_ind] + 1
            labels[points2min_area == self.INF] = 0
            reg_targets = reg_targets[range(xs.shape[0]), points2min_area_ind]
            ctn_targets = np.sqrt((reg_targets[:, [0, 2]].min(axis=1) / \
                                  reg_targets[:, [0, 2]].max(axis=1)) * \
                                  (reg_targets[:, [1, 3]].min(axis=1) / \
                                   reg_targets[:, [1, 3]].max(axis=1))).astype(np.float32)
            ctn_targets = np.reshape(
                ctn_targets, newshape=[ctn_targets.shape[0], 1])
            ctn_targets[labels <= 0] = 0
            pos_ind = np.nonzero(labels != 0)
            reg_targets_pos = reg_targets[pos_ind[0], :]
            split_sections = []
            beg = 0
            for lvl in range(len(num_points_each_level)):
                end = beg + num_points_each_level[lvl]
                split_sections.append(end)
                beg = end
            labels_by_level = np.split(labels, split_sections, axis=0)
            reg_targets_by_level = np.split(reg_targets, split_sections, axis=0)
            ctn_targets_by_level = np.split(ctn_targets, split_sections, axis=0)
            for lvl in range(len(self.downsample_ratios)):
                grid_w = int(np.ceil(w / self.downsample_ratios[lvl]))
                grid_h = int(np.ceil(h / self.downsample_ratios[lvl]))
                if self.norm_reg_targets:
                    sample['reg_target{}'.format(lvl)] = \
                        np.reshape(
                            reg_targets_by_level[lvl] / \
                            self.downsample_ratios[lvl],
                            newshape=[grid_h, grid_w, 4])
                else:
                    sample['reg_target{}'.format(lvl)] = np.reshape(
                        reg_targets_by_level[lvl],
                        newshape=[grid_h, grid_w, 4])
                sample['labels{}'.format(lvl)] = np.reshape(
                    labels_by_level[lvl], newshape=[grid_h, grid_w, 1])
                sample['centerness{}'.format(lvl)] = np.reshape(
                    ctn_targets_by_level[lvl], newshape=[grid_h, grid_w, 1])
F
Feng Ni 已提交
477

478 479 480 481
            sample.pop('is_crowd', None)
            sample.pop('difficult', None)
            sample.pop('gt_class', None)
            sample.pop('gt_bbox', None)
Q
qingqing01 已提交
482 483 484
        return samples


G
Guanghua Yu 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
@register_op
class Gt2GFLTarget(BaseOperator):
    """
    Generate GFocal loss targets by groud truth data
    """

    def __init__(self,
                 num_classes=80,
                 downsample_ratios=[8, 16, 32, 64, 128],
                 grid_cell_scale=4,
                 cell_offset=0):
        super(Gt2GFLTarget, self).__init__()
        self.num_classes = num_classes
        self.downsample_ratios = downsample_ratios
        self.grid_cell_scale = grid_cell_scale
        self.cell_offset = cell_offset

        self.assigner = ATSSAssigner()

    def get_grid_cells(self, featmap_size, scale, stride, offset=0):
        """
        Generate grid cells of a feature map for target assignment.
        Args:
            featmap_size: Size of a single level feature map.
            scale: Grid cell scale.
            stride: Down sample stride of the feature map.
            offset: Offset of grid cells.
        return:
            Grid_cells xyxy position. Size should be [feat_w * feat_h, 4]
        """
        cell_size = stride * scale
        h, w = featmap_size
        x_range = (np.arange(w, dtype=np.float32) + offset) * stride
        y_range = (np.arange(h, dtype=np.float32) + offset) * stride
        x, y = np.meshgrid(x_range, y_range)
        y = y.flatten()
        x = x.flatten()
        grid_cells = np.stack(
            [
                x - 0.5 * cell_size, y - 0.5 * cell_size, x + 0.5 * cell_size,
                y + 0.5 * cell_size
            ],
            axis=-1)
        return grid_cells

    def get_sample(self, assign_gt_inds, gt_bboxes):
        pos_inds = np.unique(np.nonzero(assign_gt_inds > 0)[0])
        neg_inds = np.unique(np.nonzero(assign_gt_inds == 0)[0])
        pos_assigned_gt_inds = assign_gt_inds[pos_inds] - 1

        if gt_bboxes.size == 0:
            # hack for index error case
            assert pos_assigned_gt_inds.size == 0
            pos_gt_bboxes = np.empty_like(gt_bboxes).reshape(-1, 4)
        else:
            if len(gt_bboxes.shape) < 2:
                gt_bboxes = gt_bboxes.resize(-1, 4)
            pos_gt_bboxes = gt_bboxes[pos_assigned_gt_inds, :]
        return pos_inds, neg_inds, pos_gt_bboxes, pos_assigned_gt_inds

    def __call__(self, samples, context=None):
        assert len(samples) > 0
        batch_size = len(samples)
        # get grid cells of image
        h, w = samples[0]['image'].shape[1:3]
        multi_level_grid_cells = []
        for stride in self.downsample_ratios:
            featmap_size = (int(math.ceil(h / stride)),
                            int(math.ceil(w / stride)))
            multi_level_grid_cells.append(
                self.get_grid_cells(featmap_size, self.grid_cell_scale, stride,
                                    self.cell_offset))
        mlvl_grid_cells_list = [
            multi_level_grid_cells for i in range(batch_size)
        ]
        # pixel cell number of multi-level feature maps
        num_level_cells = [
            grid_cells.shape[0] for grid_cells in mlvl_grid_cells_list[0]
        ]
        num_level_cells_list = [num_level_cells] * batch_size
        # concat all level cells and to a single array
        for i in range(batch_size):
            mlvl_grid_cells_list[i] = np.concatenate(mlvl_grid_cells_list[i])
        # target assign on all images
        for sample, grid_cells, num_level_cells in zip(
                samples, mlvl_grid_cells_list, num_level_cells_list):
            gt_bboxes = sample['gt_bbox']
            gt_labels = sample['gt_class'].squeeze()
            if gt_labels.size == 1:
                gt_labels = np.array([gt_labels]).astype(np.int32)
            gt_bboxes_ignore = None
            assign_gt_inds, _ = self.assigner(grid_cells, num_level_cells,
                                              gt_bboxes, gt_bboxes_ignore,
                                              gt_labels)
            pos_inds, neg_inds, pos_gt_bboxes, pos_assigned_gt_inds = self.get_sample(
                assign_gt_inds, gt_bboxes)

            num_cells = grid_cells.shape[0]
            bbox_targets = np.zeros_like(grid_cells)
            bbox_weights = np.zeros_like(grid_cells)
            labels = np.ones([num_cells], dtype=np.int64) * self.num_classes
            label_weights = np.zeros([num_cells], dtype=np.float32)

            if len(pos_inds) > 0:
                pos_bbox_targets = pos_gt_bboxes
                bbox_targets[pos_inds, :] = pos_bbox_targets
                bbox_weights[pos_inds, :] = 1.0
                if not np.any(gt_labels):
                    labels[pos_inds] = 0
                else:
                    labels[pos_inds] = gt_labels[pos_assigned_gt_inds]

                label_weights[pos_inds] = 1.0
            if len(neg_inds) > 0:
                label_weights[neg_inds] = 1.0
            sample['grid_cells'] = grid_cells
            sample['labels'] = labels
            sample['label_weights'] = label_weights
            sample['bbox_targets'] = bbox_targets
            sample['pos_num'] = max(pos_inds.size, 1)
            sample.pop('is_crowd', None)
            sample.pop('difficult', None)
            sample.pop('gt_class', None)
            sample.pop('gt_bbox', None)
            sample.pop('gt_score', None)
        return samples


Q
qingqing01 已提交
613 614
@register_op
class Gt2TTFTarget(BaseOperator):
W
wangxinxin08 已提交
615
    __shared__ = ['num_classes']
Q
qingqing01 已提交
616 617 618 619 620 621 622 623 624 625 626
    """
    Gt2TTFTarget
    Generate TTFNet targets by ground truth data
    
    Args:
        num_classes(int): the number of classes.
        down_ratio(int): the down ratio from images to heatmap, 4 by default.
        alpha(float): the alpha parameter to generate gaussian target.
            0.54 by default.
    """

W
wangxinxin08 已提交
627
    def __init__(self, num_classes=80, down_ratio=4, alpha=0.54):
Q
qingqing01 已提交
628 629 630 631 632
        super(Gt2TTFTarget, self).__init__()
        self.down_ratio = down_ratio
        self.num_classes = num_classes
        self.alpha = alpha

W
wangxinxin08 已提交
633
    def __call__(self, samples, context=None):
Q
qingqing01 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
        output_size = samples[0]['image'].shape[1]
        feat_size = output_size // self.down_ratio
        for sample in samples:
            heatmap = np.zeros(
                (self.num_classes, feat_size, feat_size), dtype='float32')
            box_target = np.ones(
                (4, feat_size, feat_size), dtype='float32') * -1
            reg_weight = np.zeros((1, feat_size, feat_size), dtype='float32')

            gt_bbox = sample['gt_bbox']
            gt_class = sample['gt_class']

            bbox_w = gt_bbox[:, 2] - gt_bbox[:, 0] + 1
            bbox_h = gt_bbox[:, 3] - gt_bbox[:, 1] + 1
            area = bbox_w * bbox_h
            boxes_areas_log = np.log(area)
            boxes_ind = np.argsort(boxes_areas_log, axis=0)[::-1]
            boxes_area_topk_log = boxes_areas_log[boxes_ind]
            gt_bbox = gt_bbox[boxes_ind]
            gt_class = gt_class[boxes_ind]

            feat_gt_bbox = gt_bbox / self.down_ratio
            feat_gt_bbox = np.clip(feat_gt_bbox, 0, feat_size - 1)
            feat_hs, feat_ws = (feat_gt_bbox[:, 3] - feat_gt_bbox[:, 1],
                                feat_gt_bbox[:, 2] - feat_gt_bbox[:, 0])

            ct_inds = np.stack(
                [(gt_bbox[:, 0] + gt_bbox[:, 2]) / 2,
                 (gt_bbox[:, 1] + gt_bbox[:, 3]) / 2],
                axis=1) / self.down_ratio

            h_radiuses_alpha = (feat_hs / 2. * self.alpha).astype('int32')
            w_radiuses_alpha = (feat_ws / 2. * self.alpha).astype('int32')

            for k in range(len(gt_bbox)):
                cls_id = gt_class[k]
                fake_heatmap = np.zeros((feat_size, feat_size), dtype='float32')
                self.draw_truncate_gaussian(fake_heatmap, ct_inds[k],
                                            h_radiuses_alpha[k],
                                            w_radiuses_alpha[k])

                heatmap[cls_id] = np.maximum(heatmap[cls_id], fake_heatmap)
                box_target_inds = fake_heatmap > 0
                box_target[:, box_target_inds] = gt_bbox[k][:, None]

                local_heatmap = fake_heatmap[box_target_inds]
                ct_div = np.sum(local_heatmap)
                local_heatmap *= boxes_area_topk_log[k]
                reg_weight[0, box_target_inds] = local_heatmap / ct_div
            sample['ttf_heatmap'] = heatmap
            sample['ttf_box_target'] = box_target
            sample['ttf_reg_weight'] = reg_weight
686 687 688 689 690
            sample.pop('is_crowd', None)
            sample.pop('difficult', None)
            sample.pop('gt_class', None)
            sample.pop('gt_bbox', None)
            sample.pop('gt_score', None)
Q
qingqing01 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
        return samples

    def draw_truncate_gaussian(self, heatmap, center, h_radius, w_radius):
        h, w = 2 * h_radius + 1, 2 * w_radius + 1
        sigma_x = w / 6
        sigma_y = h / 6
        gaussian = gaussian2D((h, w), sigma_x, sigma_y)

        x, y = int(center[0]), int(center[1])

        height, width = heatmap.shape[0:2]

        left, right = min(x, w_radius), min(width - x, w_radius + 1)
        top, bottom = min(y, h_radius), min(height - y, h_radius + 1)

        masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
        masked_gaussian = gaussian[h_radius - top:h_radius + bottom, w_radius -
                                   left:w_radius + right]
        if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0:
            heatmap[y - top:y + bottom, x - left:x + right] = np.maximum(
                masked_heatmap, masked_gaussian)
        return heatmap
W
wangxinxin08 已提交
713 714 715 716 717


@register_op
class Gt2Solov2Target(BaseOperator):
    """Assign mask target and labels in SOLOv2 network.
G
Guanghua Yu 已提交
718 719
    The code of this function is based on:
        https://github.com/WXinlong/SOLO/blob/master/mmdet/models/anchor_heads/solov2_head.py#L271
W
wangxinxin08 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
    Args:
        num_grids (list): The list of feature map grids size.
        scale_ranges (list): The list of mask boundary range.
        coord_sigma (float): The coefficient of coordinate area length.
        sampling_ratio (float): The ratio of down sampling.
    """

    def __init__(self,
                 num_grids=[40, 36, 24, 16, 12],
                 scale_ranges=[[1, 96], [48, 192], [96, 384], [192, 768],
                               [384, 2048]],
                 coord_sigma=0.2,
                 sampling_ratio=4.0):
        super(Gt2Solov2Target, self).__init__()
        self.num_grids = num_grids
        self.scale_ranges = scale_ranges
        self.coord_sigma = coord_sigma
        self.sampling_ratio = sampling_ratio

    def _scale_size(self, im, scale):
        h, w = im.shape[:2]
        new_size = (int(w * float(scale) + 0.5), int(h * float(scale) + 0.5))
        resized_img = cv2.resize(
            im, None, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
        return resized_img

    def __call__(self, samples, context=None):
        sample_id = 0
        max_ins_num = [0] * len(self.num_grids)
        for sample in samples:
            gt_bboxes_raw = sample['gt_bbox']
            gt_labels_raw = sample['gt_class'] + 1
            im_c, im_h, im_w = sample['image'].shape[:]
            gt_masks_raw = sample['gt_segm'].astype(np.uint8)
            mask_feat_size = [
                int(im_h / self.sampling_ratio), int(im_w / self.sampling_ratio)
            ]
            gt_areas = np.sqrt((gt_bboxes_raw[:, 2] - gt_bboxes_raw[:, 0]) *
                               (gt_bboxes_raw[:, 3] - gt_bboxes_raw[:, 1]))
            ins_ind_label_list = []
            idx = 0
            for (lower_bound, upper_bound), num_grid \
                    in zip(self.scale_ranges, self.num_grids):

                hit_indices = ((gt_areas >= lower_bound) &
                               (gt_areas <= upper_bound)).nonzero()[0]
                num_ins = len(hit_indices)

                ins_label = []
                grid_order = []
                cate_label = np.zeros([num_grid, num_grid], dtype=np.int64)
                ins_ind_label = np.zeros([num_grid**2], dtype=np.bool)

                if num_ins == 0:
                    ins_label = np.zeros(
                        [1, mask_feat_size[0], mask_feat_size[1]],
                        dtype=np.uint8)
                    ins_ind_label_list.append(ins_ind_label)
                    sample['cate_label{}'.format(idx)] = cate_label.flatten()
                    sample['ins_label{}'.format(idx)] = ins_label
                    sample['grid_order{}'.format(idx)] = np.asarray(
                        [sample_id * num_grid * num_grid + 0], dtype=np.int32)
                    idx += 1
                    continue
                gt_bboxes = gt_bboxes_raw[hit_indices]
                gt_labels = gt_labels_raw[hit_indices]
                gt_masks = gt_masks_raw[hit_indices, ...]

                half_ws = 0.5 * (
                    gt_bboxes[:, 2] - gt_bboxes[:, 0]) * self.coord_sigma
                half_hs = 0.5 * (
                    gt_bboxes[:, 3] - gt_bboxes[:, 1]) * self.coord_sigma

                for seg_mask, gt_label, half_h, half_w in zip(
                        gt_masks, gt_labels, half_hs, half_ws):
                    if seg_mask.sum() == 0:
                        continue
                    # mass center
                    upsampled_size = (mask_feat_size[0] * 4,
                                      mask_feat_size[1] * 4)
                    center_h, center_w = ndimage.measurements.center_of_mass(
                        seg_mask)
                    coord_w = int(
                        (center_w / upsampled_size[1]) // (1. / num_grid))
                    coord_h = int(
                        (center_h / upsampled_size[0]) // (1. / num_grid))

                    # left, top, right, down
                    top_box = max(0,
                                  int(((center_h - half_h) / upsampled_size[0])
                                      // (1. / num_grid)))
                    down_box = min(num_grid - 1,
                                   int(((center_h + half_h) / upsampled_size[0])
                                       // (1. / num_grid)))
                    left_box = max(0,
                                   int(((center_w - half_w) / upsampled_size[1])
                                       // (1. / num_grid)))
                    right_box = min(num_grid - 1,
                                    int(((center_w + half_w) /
                                         upsampled_size[1]) // (1. / num_grid)))

                    top = max(top_box, coord_h - 1)
                    down = min(down_box, coord_h + 1)
                    left = max(coord_w - 1, left_box)
                    right = min(right_box, coord_w + 1)

                    cate_label[top:(down + 1), left:(right + 1)] = gt_label
                    seg_mask = self._scale_size(
                        seg_mask, scale=1. / self.sampling_ratio)
                    for i in range(top, down + 1):
                        for j in range(left, right + 1):
                            label = int(i * num_grid + j)
                            cur_ins_label = np.zeros(
                                [mask_feat_size[0], mask_feat_size[1]],
                                dtype=np.uint8)
                            cur_ins_label[:seg_mask.shape[0], :seg_mask.shape[
                                1]] = seg_mask
                            ins_label.append(cur_ins_label)
                            ins_ind_label[label] = True
                            grid_order.append(sample_id * num_grid * num_grid +
                                              label)
                if ins_label == []:
                    ins_label = np.zeros(
                        [1, mask_feat_size[0], mask_feat_size[1]],
                        dtype=np.uint8)
                    ins_ind_label_list.append(ins_ind_label)
                    sample['cate_label{}'.format(idx)] = cate_label.flatten()
                    sample['ins_label{}'.format(idx)] = ins_label
                    sample['grid_order{}'.format(idx)] = np.asarray(
                        [sample_id * num_grid * num_grid + 0], dtype=np.int32)
                else:
                    ins_label = np.stack(ins_label, axis=0)
                    ins_ind_label_list.append(ins_ind_label)
                    sample['cate_label{}'.format(idx)] = cate_label.flatten()
                    sample['ins_label{}'.format(idx)] = ins_label
                    sample['grid_order{}'.format(idx)] = np.asarray(
                        grid_order, dtype=np.int32)
                    assert len(grid_order) > 0
                max_ins_num[idx] = max(
                    max_ins_num[idx],
                    sample['ins_label{}'.format(idx)].shape[0])
                idx += 1
            ins_ind_labels = np.concatenate([
                ins_ind_labels_level_img
                for ins_ind_labels_level_img in ins_ind_label_list
            ])
            fg_num = np.sum(ins_ind_labels)
            sample['fg_num'] = fg_num
            sample_id += 1

            sample.pop('is_crowd')
            sample.pop('gt_class')
            sample.pop('gt_bbox')
            sample.pop('gt_poly')
            sample.pop('gt_segm')

        # padding batch
        for data in samples:
            for idx in range(len(self.num_grids)):
                gt_ins_data = np.zeros(
                    [
                        max_ins_num[idx],
                        data['ins_label{}'.format(idx)].shape[1],
                        data['ins_label{}'.format(idx)].shape[2]
                    ],
                    dtype=np.uint8)
                gt_ins_data[0:data['ins_label{}'.format(idx)].shape[
                    0], :, :] = data['ins_label{}'.format(idx)]
                gt_grid_order = np.zeros([max_ins_num[idx]], dtype=np.int32)
                gt_grid_order[0:data['grid_order{}'.format(idx)].shape[
                    0]] = data['grid_order{}'.format(idx)]
                data['ins_label{}'.format(idx)] = gt_ins_data
                data['grid_order{}'.format(idx)] = gt_grid_order

        return samples
F
FL77N 已提交
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912


@register_op
class Gt2SparseRCNNTarget(BaseOperator):
    '''
    Generate SparseRCNN targets by groud truth data
    '''

    def __init__(self):
        super(Gt2SparseRCNNTarget, self).__init__()

    def __call__(self, samples, context=None):
        for sample in samples:
            im = sample["image"]
            h, w = im.shape[1:3]
            img_whwh = np.array([w, h, w, h], dtype=np.int32)
            sample["img_whwh"] = img_whwh
            if "scale_factor" in sample:
S
shangliang Xu 已提交
913 914 915
                sample["scale_factor_wh"] = np.array(
                    [sample["scale_factor"][1], sample["scale_factor"][0]],
                    dtype=np.float32)
F
FL77N 已提交
916
            else:
S
shangliang Xu 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
                sample["scale_factor_wh"] = np.array(
                    [1.0, 1.0], dtype=np.float32)

        return samples


@register_op
class PadMaskBatch(BaseOperator):
    """
    Pad a batch of samples so they can be divisible by a stride.
    The layout of each image should be 'CHW'.
    Args:
        pad_to_stride (int): If `pad_to_stride > 0`, pad zeros to ensure
            height and width is divisible by `pad_to_stride`.
        return_pad_mask (bool): If `return_pad_mask = True`, return
            `pad_mask` for transformer.
    """

    def __init__(self, pad_to_stride=0, return_pad_mask=False):
        super(PadMaskBatch, self).__init__()
        self.pad_to_stride = pad_to_stride
        self.return_pad_mask = return_pad_mask

    def __call__(self, samples, context=None):
        """
        Args:
            samples (list): a batch of sample, each is dict.
        """
        coarsest_stride = self.pad_to_stride

        max_shape = np.array([data['image'].shape for data in samples]).max(
            axis=0)
        if coarsest_stride > 0:
            max_shape[1] = int(
                np.ceil(max_shape[1] / coarsest_stride) * coarsest_stride)
            max_shape[2] = int(
                np.ceil(max_shape[2] / coarsest_stride) * coarsest_stride)

        for data in samples:
            im = data['image']
            im_c, im_h, im_w = im.shape[:]
            padding_im = np.zeros(
                (im_c, max_shape[1], max_shape[2]), dtype=np.float32)
            padding_im[:, :im_h, :im_w] = im
            data['image'] = padding_im
            if 'semantic' in data and data['semantic'] is not None:
                semantic = data['semantic']
                padding_sem = np.zeros(
                    (1, max_shape[1], max_shape[2]), dtype=np.float32)
                padding_sem[:, :im_h, :im_w] = semantic
                data['semantic'] = padding_sem
            if 'gt_segm' in data and data['gt_segm'] is not None:
                gt_segm = data['gt_segm']
                padding_segm = np.zeros(
                    (gt_segm.shape[0], max_shape[1], max_shape[2]),
                    dtype=np.uint8)
                padding_segm[:, :im_h, :im_w] = gt_segm
                data['gt_segm'] = padding_segm
            if self.return_pad_mask:
                padding_mask = np.zeros(
                    (max_shape[1], max_shape[2]), dtype=np.float32)
                padding_mask[:im_h, :im_w] = 1.
                data['pad_mask'] = padding_mask

            if 'gt_rbox2poly' in data and data['gt_rbox2poly'] is not None:
                # ploy to rbox
                polys = data['gt_rbox2poly']
                rbox = bbox_utils.poly2rbox(polys)
                data['gt_rbox'] = rbox
F
FL77N 已提交
986 987

        return samples
W
wangguanzhong 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068


@register_op
class Gt2CenterNetTarget(BaseOperator):
    """Gt2CenterNetTarget
    Genterate CenterNet targets by ground-truth
    Args:
        down_ratio (int): The down sample ratio between output feature and 
                          input image.
        num_classes (int): The number of classes, 80 by default.
        max_objs (int): The maximum objects detected, 128 by default.
    """

    def __init__(self, down_ratio, num_classes=80, max_objs=128):
        super(Gt2CenterNetTarget, self).__init__()
        self.down_ratio = down_ratio
        self.num_classes = num_classes
        self.max_objs = max_objs

    def __call__(self, sample, context=None):
        input_h, input_w = sample['image'].shape[1:]
        output_h = input_h // self.down_ratio
        output_w = input_w // self.down_ratio
        num_classes = self.num_classes
        c = sample['center']
        s = sample['scale']
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']

        hm = np.zeros((num_classes, output_h, output_w), dtype=np.float32)
        wh = np.zeros((self.max_objs, 2), dtype=np.float32)
        dense_wh = np.zeros((2, output_h, output_w), dtype=np.float32)
        reg = np.zeros((self.max_objs, 2), dtype=np.float32)
        ind = np.zeros((self.max_objs), dtype=np.int64)
        reg_mask = np.zeros((self.max_objs), dtype=np.int32)
        cat_spec_wh = np.zeros(
            (self.max_objs, num_classes * 2), dtype=np.float32)
        cat_spec_mask = np.zeros(
            (self.max_objs, num_classes * 2), dtype=np.int32)

        trans_output = get_affine_transform(c, [s, s], 0, [output_w, output_h])

        gt_det = []
        for i, (bbox, cls) in enumerate(zip(gt_bbox, gt_class)):
            cls = int(cls)
            bbox[:2] = affine_transform(bbox[:2], trans_output)
            bbox[2:] = affine_transform(bbox[2:], trans_output)
            bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, output_w - 1)
            bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, output_h - 1)
            h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
            if h > 0 and w > 0:
                radius = gaussian_radius((math.ceil(h), math.ceil(w)), 0.7)
                radius = max(0, int(radius))
                ct = np.array(
                    [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2],
                    dtype=np.float32)
                ct_int = ct.astype(np.int32)
                draw_umich_gaussian(hm[cls], ct_int, radius)
                wh[i] = 1. * w, 1. * h
                ind[i] = ct_int[1] * output_w + ct_int[0]
                reg[i] = ct - ct_int
                reg_mask[i] = 1
                cat_spec_wh[i, cls * 2:cls * 2 + 2] = wh[i]
                cat_spec_mask[i, cls * 2:cls * 2 + 2] = 1
                gt_det.append([
                    ct[0] - w / 2, ct[1] - h / 2, ct[0] + w / 2, ct[1] + h / 2,
                    1, cls
                ])

        sample.pop('gt_bbox', None)
        sample.pop('gt_class', None)
        sample.pop('center', None)
        sample.pop('scale', None)
        sample.pop('is_crowd', None)
        sample.pop('difficult', None)
        sample['heatmap'] = hm
        sample['index_mask'] = reg_mask
        sample['index'] = ind
        sample['size'] = wh
        sample['offset'] = reg
        return sample