softmax_mkldnn_op.cc 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <iostream>
16 17
#include "mkldnn.hpp"
#include "paddle/fluid/operators/softmax_op.h"
J
Jacek Czaja 已提交
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;

using mkldnn::memory;  // Note: paddle has also "memory" namespace
using mkldnn::primitive;
using mkldnn::prop_kind;
F
fengjiayi 已提交
30 31
using mkldnn::softmax_backward;
using mkldnn::softmax_forward;
32
using mkldnn::stream;
J
Jacek Czaja 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
using platform::to_void_cast;

class SoftmaxMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  SoftmaxMKLDNNHandler(
      std::shared_ptr<mkldnn::softmax_forward::primitive_desc> softmax_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        softmax_pd_(softmax_pd) {}

  SoftmaxMKLDNNHandler(
      std::shared_ptr<mkldnn::softmax_forward::primitive_desc> softmax_pd,
      std::shared_ptr<mkldnn::softmax_backward::primitive_desc> softmax_bwd_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        softmax_pd_(softmax_pd),
        softmax_bwd_pd_(softmax_bwd_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

  std::shared_ptr<mkldnn::softmax_forward> AcquireSoftmax(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    /*Generate key*/
    auto prim_key = key_ + "@softmax_p";

    auto softmax_p = std::static_pointer_cast<mkldnn::softmax_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((softmax_p != nullptr) || (is_reusing_ == false),
                   "Fail to find softmax primitive in device context");
    if (softmax_p == nullptr) {
      softmax_p = std::make_shared<mkldnn::softmax_forward>(
69
          *softmax_pd_, *(static_cast<mkldnn::memory*>(src_memory_p.get())),
J
Jacek Czaja 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
          *(static_cast<mkldnn::memory*>(dst_memory_p.get())));
      dev_ctx_.SetBlob(prim_key, softmax_p);
    } else {
      is_reusing_ = true;
    }

    return softmax_p;
  }

  std::shared_ptr<mkldnn::softmax_backward> AcquireSoftmaxBackward(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@softmax_bwd_p";
    auto softmax_bwd_p = std::static_pointer_cast<mkldnn::softmax_backward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((softmax_bwd_p != nullptr) || (is_reusing_ == false),
                   "Fail to find softmax backward primitive in device context");
    if (softmax_bwd_p == nullptr) {
      softmax_bwd_p = std::make_shared<mkldnn::softmax_backward>(
90 91
          *softmax_bwd_pd_, *dst_memory_p, *diff_dst_memory_p,
          *diff_src_memory_p);
J
Jacek Czaja 已提交
92 93 94 95 96 97 98 99 100 101 102 103
      dev_ctx_.SetBlob(prim_key, softmax_bwd_p);
    } else {
      is_reusing_ = true;
    }

    return softmax_bwd_p;
  }

 private:
  std::shared_ptr<mkldnn::softmax_forward::primitive_desc> softmax_pd_;
  std::shared_ptr<mkldnn::softmax_backward::primitive_desc> softmax_bwd_pd_;
};
104 105 106 107 108 109 110 111 112

template <typename T>
class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();
113 114
    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");
F
fengjiayi 已提交
115
    PADDLE_ENFORCE_EQ(
116
        input->dims(), output->dims(),
F
fengjiayi 已提交
117 118 119 120
        "The shape of softmax's input and output must be identical.");

    // make sure 'output' holds memory, which will be shared by
    // 'flattened_output' later.
121 122 123 124 125 126 127 128 129
    output->mutable_data<T>(ctx.GetPlace());

    // flatten input and output to 2-D matrixs
    auto dims = input->dims();  // input and output share the same shape
    auto flattened_dims = framework::flatten_to_2d(dims, dims.size() - 1);
    framework::Tensor flattened_input;
    framework::Tensor flattened_output;
    flattened_input.ShareDataWith(*input).Resize(flattened_dims);
    flattened_output.ShareDataWith(*output).Resize(flattened_dims);
F
fengjiayi 已提交
130

131 132
    const T* input_data = flattened_input.data<T>();
    T* output_data = flattened_output.mutable_data<T>(ctx.GetPlace());
D
dengkaipeng 已提交
133

134
    std::vector<int> src_tz = paddle::framework::vectorize2int(flattened_dims);
F
fengjiayi 已提交
135
    std::vector<int> dst_tz = src_tz;
136 137
    // Same memory descriptor to be used for input and output
    memory::dims softmax_tz = {src_tz[0], src_tz[1]};
138
    // Generate keys for storing/retriving primitives for this operator
J
Jacek Czaja 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    const std::string key =
        platform::MKLDNNHandler::GetHash(softmax_tz, ctx.op().Output("Out"));
    const std::string key_softmax_pd = key + "@softmax_pd";

    // Currently only NC data format is supported
    auto softmax_md = MKLDNNMemDesc(
        {softmax_tz}, platform::MKLDNNGetDataType<T>(), memory::format::nc);
    // Normalization is made after innermost dimension eg. C out of NC
    auto softmax_desc = softmax_forward::desc(prop_kind::forward_scoring,
                                              softmax_md, 1 /*dim: C*/);
    auto softmax_pd = std::make_shared<mkldnn::softmax_forward::primitive_desc>(
        softmax_desc, mkldnn_engine);
    dev_ctx.SetBlob(key_softmax_pd, softmax_pd);

    SoftmaxMKLDNNHandler handler(softmax_pd, dev_ctx, mkldnn_engine, key);
    auto softmax_src_memory_p =
        handler.AcquireSrcMemory(softmax_md, to_void_cast<T>(input_data));
    auto softmax_dst_memory_p =
        handler.AcquireDstMemory(softmax_md, to_void_cast<T>(output_data));
    auto softmax_p =
        handler.AcquireSoftmax(softmax_dst_memory_p, softmax_src_memory_p);
160

161 162 163
    // We cannot use softmax_dst_memory_p to get prim desc as
    // it contains flattened dims (2D) while output tensor can
    // have 2,3,4+ dims
164 165 166 167
    auto output_mem_pd = paddle::platform::create_prim_desc_from_dims(
        paddle::framework::vectorize2int(output->dims()),
        mkldnn::memory::format::blocked);
    output->set_mkldnn_prim_desc(output_mem_pd);
168

169 170
    std::vector<primitive> pipeline{
        *(static_cast<softmax_forward::primitive*>(softmax_p.get()))};
171
    stream(stream::kind::eager).submit(pipeline).wait();
J
Jacek Czaja 已提交
172 173 174 175

    const bool is_test = ctx.Attr<bool>("is_test");
    if (!is_test) {
      T threshold = exp(-64);
176
      for (int i = 0; i < dst_tz[0] * dst_tz[1]; ++i) {
J
Jacek Czaja 已提交
177 178 179 180
        output_data[i] =
            output_data[i] < threshold ? threshold : output_data[i];
      }
    }
181 182 183
  }
};

J
Jacek Czaja 已提交
184 185 186 187 188 189 190 191 192
template <typename T>
class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();
193 194 195
    const Tensor* output = ctx.Input<Tensor>("Out");
    auto* dout = ctx.template Input<Tensor>(framework::GradVarName("Out"));
    auto* dx =
J
Jacek Czaja 已提交
196 197
        ctx.template Output<framework::Tensor>(framework::GradVarName("X"));

F
fengjiayi 已提交
198
    PADDLE_ENFORCE_EQ(
199
        dout->dims(), dx->dims(),
F
fengjiayi 已提交
200 201 202 203
        "The shape of softmax_grad's input and output must be identical.");

    // make sure 'dx' holds memory, which will be shared by 'flattened_dx'
    // later.
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    dx->template mutable_data<T>(ctx.GetPlace());

    auto dims = dout->dims();  // input and output share the same shape
    auto flattened_dims = framework::flatten_to_2d(dims, dims.size() - 1);
    framework::Tensor flattened_output;
    framework::Tensor flattened_dout;
    framework::Tensor flattened_dx;
    flattened_output.ShareDataWith(*output).Resize(flattened_dims);
    flattened_dout.ShareDataWith(*dout).Resize(flattened_dims);
    flattened_dx.ShareDataWith(*dx).Resize(flattened_dims);

    const T* dst_data = flattened_output.data<T>();
    const T* diff_dst_ptr = flattened_dout.template data<T>();
    T* diff_src_ptr = flattened_dx.template mutable_data<T>(ctx.GetPlace());

    std::vector<int> dst_tz = paddle::framework::vectorize2int(flattened_dims);
J
Jacek Czaja 已提交
220
    std::vector<int> src_tz(dst_tz);
F
fengjiayi 已提交
221

J
Jacek Czaja 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    // Same memory descriptor to be used for input and output
    memory::dims softmax_tz = {src_tz[0], src_tz[1]};
    // Currently only supports NC data format
    // retrieve eltwise primitive desc from device context
    const std::string key =
        platform::MKLDNNHandler::GetHash(softmax_tz, ctx.op().Input("Out"));
    const std::string key_softmax_pd = key + "@softmax_pd";

    auto softmax_pd =
        std::static_pointer_cast<mkldnn::softmax_forward::primitive_desc>(
            dev_ctx.GetBlob(key_softmax_pd));
    PADDLE_ENFORCE(softmax_pd != nullptr,
                   "Fail to find softmax_pd in device context");

    // TODO(jczaja): Add layouts support when there is a need to do so
    // Two dimensional softmax does support NC format
    auto data_softmax_md = MKLDNNMemDesc(
        {softmax_tz}, platform::MKLDNNGetDataType<T>(), memory::format::nc);
    auto diff_softmax_md = MKLDNNMemDesc(
        {softmax_tz}, platform::MKLDNNGetDataType<T>(), memory::format::nc);
    // Normalization is made after innermost dimension eg. C out of NC
    auto softmax_bwd_desc =
        softmax_backward::desc(diff_softmax_md, data_softmax_md, 1 /* dim: C*/);
    auto softmax_bwd_pd =
        std::make_shared<mkldnn::softmax_backward::primitive_desc>(
            softmax_bwd_desc, mkldnn_engine, *softmax_pd);

    SoftmaxMKLDNNHandler handler(softmax_pd, softmax_bwd_pd, dev_ctx,
                                 mkldnn_engine, key);
    auto dst_memory_p =
        handler.AcquireDstMemory(data_softmax_md, to_void_cast<T>(dst_data));
    auto diff_dst_memory_p = handler.AcquireDiffDstMemory(
        diff_softmax_md, to_void_cast<T>(diff_dst_ptr));
    auto diff_src_memory_p = handler.AcquireDiffSrcMemory(
        diff_softmax_md, to_void_cast<T>(diff_src_ptr));

    // Get primitve from device context
    auto softmax_bwd_p = handler.AcquireSoftmaxBackward(
        dst_memory_p, diff_dst_memory_p, diff_src_memory_p);

    std::vector<primitive> pipeline{*softmax_bwd_p};
    stream(stream::kind::eager).submit(pipeline).wait();
  }
};
266 267 268 269 270 271 272
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNKernel<float>);
J
Jacek Czaja 已提交
273 274
REGISTER_OP_KERNEL(softmax_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNGradKernel<float>);