test_train_inference_python.sh 16.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#!/bin/bash
source test_tipc/utils_func.sh

FILENAME=$1
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer'
#                 'whole_train_whole_infer', 'whole_infer', 'klquant_whole_infer']
MODE=$2

# parse params
dataline=$(cat ${FILENAME})
IFS=$'\n'
lines=(${dataline})

# The training params
model_name=$(func_parser_value "${lines[1]}")
echo "ppdet python_infer: ${model_name}"
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")
train_use_gpu_key=$(func_parser_key "${lines[4]}")
train_use_gpu_value=$(func_parser_value "${lines[4]}")
autocast_list=$(func_parser_value "${lines[5]}")
autocast_key=$(func_parser_key "${lines[5]}")
epoch_key=$(func_parser_key "${lines[6]}")
epoch_num=$(func_parser_params "${lines[6]}")
save_model_key=$(func_parser_key "${lines[7]}")
train_batch_key=$(func_parser_key "${lines[8]}")
train_batch_value=$(func_parser_params "${lines[8]}")
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
32 33
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

trainer_list=$(func_parser_value "${lines[14]}")
norm_key=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")
pact_key=$(func_parser_key "${lines[16]}")
pact_trainer=$(func_parser_value "${lines[16]}")
fpgm_key=$(func_parser_key "${lines[17]}")
fpgm_trainer=$(func_parser_value "${lines[17]}")
distill_key=$(func_parser_key "${lines[18]}")
distill_trainer=$(func_parser_value "${lines[18]}")
trainer_key1=$(func_parser_key "${lines[19]}")
trainer_value1=$(func_parser_value "${lines[19]}")
trainer_key2=$(func_parser_key "${lines[20]}")
trainer_value2=$(func_parser_value "${lines[20]}")

# eval params
eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")

# export params
save_export_key=$(func_parser_key "${lines[27]}")
save_export_value=$(func_parser_value "${lines[27]}")
export_weight_key=$(func_parser_key "${lines[28]}")
export_weight_value=$(func_parser_value "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}")
fpgm_export=$(func_parser_value "${lines[31]}")
distill_export=$(func_parser_value "${lines[32]}")
export_key1=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}")
65
export_onnx_key=$(func_parser_key "${lines[34]}")
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
export_value2=$(func_parser_value "${lines[34]}")
kl_quant_export=$(func_parser_value "${lines[35]}")

# parser inference model
infer_mode_list=$(func_parser_value "${lines[37]}")
infer_is_quant_list=$(func_parser_value "${lines[38]}")
# parser inference
inference_py=$(func_parser_value "${lines[39]}")
use_gpu_key=$(func_parser_key "${lines[40]}")
use_gpu_list=$(func_parser_value "${lines[40]}")
use_mkldnn_key=$(func_parser_key "${lines[41]}")
use_mkldnn_list=$(func_parser_value "${lines[41]}")
cpu_threads_key=$(func_parser_key "${lines[42]}")
cpu_threads_list=$(func_parser_value "${lines[42]}")
batch_size_key=$(func_parser_key "${lines[43]}")
batch_size_list=$(func_parser_value "${lines[43]}")
use_trt_key=$(func_parser_key "${lines[44]}")
use_trt_list=$(func_parser_value "${lines[44]}")
precision_key=$(func_parser_key "${lines[45]}")
precision_list=$(func_parser_value "${lines[45]}")
infer_model_key=$(func_parser_key "${lines[46]}")
image_dir_key=$(func_parser_key "${lines[47]}")
infer_img_dir=$(func_parser_value "${lines[47]}")
save_log_key=$(func_parser_key "${lines[48]}")
benchmark_key=$(func_parser_key "${lines[49]}")
benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")

95
LOG_PATH="./test_tipc/output/${model_name}/${MODE}"
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results_python.log"


function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    _flag_quant=$6
    # inference
    for use_gpu in ${use_gpu_list[*]}; do
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
            for use_mkldnn in ${use_mkldnn_list[*]}; do
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
117
                        _save_log_path="${_log_path}/python_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_mode_paddle_batchsize_${batch_size}.log"
118 119 120 121 122 123 124 125 126 127
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
                        eval $command
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
128
                        status_check $last_status "${command}" "${status_log}" "${model_name}"
129 130 131 132 133
                    done
                done
            done
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
            for precision in ${precision_list[*]}; do
134
                if [[ ${precision} != "paddle" ]]; then
135 136 137 138 139 140 141 142
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} = "trt_int8" ]]; then
                        continue
                    fi
                    if [[ ${_flag_quant} = "True" ]] && [[ ${precision} != "trt_int8" ]]; then
                        continue
                    fi
                fi
                for batch_size in ${batch_size_list[*]}; do
143
                    _save_log_path="${_log_path}/python_infer_gpu_mode_${precision}_batchsize_${batch_size}.log"
144 145 146 147 148 149 150 151 152 153
                    set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                    set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                    set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                    set_precision=$(func_set_params "${precision_key}" "${precision}")
                    set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
                    set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
                    command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
                    eval $command
                    last_status=${PIPESTATUS[0]}
                    eval "cat ${_save_log_path}"
154
                    status_check $last_status "${command}" "${status_log}" "${model_name}"
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
                done
            done
        else
            echo "Does not support hardware other than CPU and GPU Currently!"
        fi
    done
}

if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
    # set CUDA_VISIBLE_DEVICES
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    eval $env

    Count=0
    IFS="|"
    infer_quant_flag=(${infer_is_quant_list})
    for infer_mode in ${infer_mode_list[*]}; do
177 178 179
        if [ ${infer_mode} = "null" ]; then
            continue
        fi
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        if [ ${MODE} = "klquant_whole_infer" ] && [ ${infer_mode} != "kl_quant" ]; then
            continue
        fi
        if [ ${MODE} = "whole_infer" ] && [ ${infer_mode} = "kl_quant" ]; then
            continue
        fi
        # run export
        case ${infer_mode} in
            norm) run_export=${norm_export} ;;
            pact) run_export=${pact_export} ;;
            fpgm) run_export=${fpgm_export} ;;
            distill) run_export=${distill_export} ;;
            kl_quant) run_export=${kl_quant_export} ;;
            *) echo "Undefined infer_mode!"; exit 1;
        esac
        set_export_weight=$(func_set_params "${export_weight_key}" "${export_weight_value}")
        set_save_export_dir=$(func_set_params "${save_export_key}" "${save_export_value}")
197
        set_filename=$(func_set_params "filename" "${model_name}")
198 199 200
        export_cmd="${python} ${run_export} ${set_export_weight} ${set_filename} ${set_save_export_dir} "
        echo  $export_cmd
        eval $export_cmd
201
        status_check $? "${export_cmd}" "${status_log}" "${model_name}"
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

        #run inference
        save_export_model_dir="${save_export_value}/${model_name}"
        is_quant=${infer_quant_flag[Count]}
        func_inference "${python}" "${inference_py}" "${save_export_model_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
        Count=$((${Count} + 1))
    done
else
    IFS="|"
    Count=0
    for gpu in ${gpu_list[*]}; do
        use_gpu=${train_use_gpu_value}
        Count=$((${Count} + 1))
        ips=""
        if [ ${gpu} = "-1" ];then
            env=""
            use_gpu=False
        elif [ ${#gpu} -le 1 ];then
            env="export CUDA_VISIBLE_DEVICES=${gpu}"
            eval ${env}
        elif [ ${#gpu} -le 15 ];then
            IFS=","
            array=(${gpu})
            env="export CUDA_VISIBLE_DEVICES=${array[0]}"
            IFS="|"
        else
            IFS=";"
            array=(${gpu})
            ips=${array[0]}
            gpu=${array[1]}
            IFS="|"
            env=" "
        fi
        for autocast in ${autocast_list[*]}; do
            for trainer in ${trainer_list[*]}; do
                flag_quant=False
                if [ ${trainer} = "${norm_key}" ]; then
                    run_train=${norm_trainer}
                    run_export=${norm_export}
                elif [ ${trainer} = "${pact_key}" ]; then
                    run_train=${pact_trainer}
                    run_export=${pact_export}
                    flag_quant=True
                elif [ ${trainer} = "${fpgm_key}" ]; then
                    run_train=${fpgm_trainer}
                    run_export=${fpgm_export}
                elif [ ${trainer} = "${distill_key}" ]; then
                    run_train=${distill_trainer}
                    run_export=${distill_export}
                elif [ ${trainer} = "${trainer_key1}" ]; then
                    run_train=${trainer_value1}
                    run_export=${export_value1}
                elif [ ${trainer} = "${trainer_key2}" ]; then
                    run_train=${trainer_value2}
                    run_export=${export_value2}
                else
                    continue
                fi

                if [ ${run_train} = "null" ]; then
                    continue
                fi

                if [ ${autocast} = "amp" ]; then
266
                    set_autocast="--amp"
267 268 269 270 271 272
                else
                    set_autocast=" "
                fi
                set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
                set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
                set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
273
                set_filename=$(func_set_params "filename" "${model_name}")
274
                set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
275
                set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
276 277 278
                save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"

                set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
279
                nodes="1"
280
                if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
281
                    cmd="${python} ${run_train} LearningRate.base_lr=0.0001 log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_train_params1} ${set_autocast}"
282
                elif [ ${#ips} -le 15 ];then  # train with multi-gpu
283
                    cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_train_params1} ${set_autocast}"
284
                else     # train with multi-machine
285 286 287 288 289 290 291
                    IFS=","
                    ips_array=(${ips})
                    nodes=${#ips_array[@]}
                    save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
                    IFS="|"
                    set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
                    cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_train_params1} ${set_autocast}"
292 293
                fi
                # run train
294 295
                train_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}.log"
                eval "${cmd} > ${train_log_path} 2>&1"
296 297 298
                last_status=$?
                cat ${train_log_path}
                status_check $last_status "${cmd}" "${status_log}" "${model_name}"
299 300 301 302 303

                set_eval_trained_weight=$(func_set_params "${export_weight_key}" "${save_log}/${model_name}/${train_model_name}")
                # run eval
                if [ ${eval_py} != "null" ]; then
                    set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
304
                    eval_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_eval.log"
305
                    eval_cmd="${python} ${eval_py} ${set_eval_trained_weight} ${set_use_gpu} ${set_eval_params1}"
306
                    eval "${eval_cmd} > ${eval_log_path} 2>&1"
307 308 309
                    last_status=$?
                    cat ${eval_log_path}
                    status_check $last_status "${eval_cmd}" "${status_log}" "${model_name}"
310 311 312
                fi
                # run export model
                if [ ${run_export} != "null" ]; then
313
                    save_export_model_dir="${save_log}/${model_name}"
314
                    set_export_weight=$(func_set_params "${export_weight_key}" "${save_log}/${model_name}/${train_model_name}")
315
                    set_save_export_dir=$(func_set_params "${save_export_key}" "${save_log}")
316 317 318 319
                    if [ ${export_onnx_key} = "export_onnx" ]; then
                        # run export onnx model for rcnn
                        export_cmd="${python} ${run_export} ${set_export_weight} ${set_filename} export_onnx=True ${set_save_export_dir} "
                        eval $export_cmd
320
                        status_check $? "${export_cmd}" "${status_log}" "${model_name}"
321 322 323 324
                        # copy model for inference benchmark
                        eval "cp ${save_export_model_dir}/* ${save_log}/"
                    fi
                    # run export model
325
                    export_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_export.log"
326
                    export_cmd="${python} ${run_export} ${set_export_weight} ${set_filename} ${set_save_export_dir} "
327
                    eval "${export_cmd} > ${export_log_path} 2>&1"
328 329 330
                    last_status=$?
                    cat ${export_log_path}
                    status_check $last_status "${export_cmd}" "${status_log}" "${model_name}"
331 332

                    #run inference
333 334 335 336
                    if [ ${export_onnx_key} != "export_onnx" ]; then
                        # copy model for inference benchmark
                        eval "cp ${save_export_model_dir}/* ${save_log}/"
                    fi
337 338 339 340 341 342 343 344 345
                    eval $env
                    func_inference "${python}" "${inference_py}" "${save_export_model_dir}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"

                    eval "unset CUDA_VISIBLE_DEVICES"
                fi
            done  # done with:    for trainer in ${trainer_list[*]}; do
        done      # done with:    for autocast in ${autocast_list[*]}; do
    done          # done with:    for gpu in ${gpu_list[*]}; do
fi  # end if [ ${MODE} = "infer" ]; then