README_cn.md 4.7 KB
Newer Older
1 2
[English](README.md) | 简体中文
# 特色垂类跟踪模型
3

4
## 人头跟踪(Head Tracking)
5

6 7
现有行人跟踪器对高人群密度场景表现不佳,人头跟踪更适用于密集场景的跟踪。
[HT-21](https://motchallenge.net/data/Head_Tracking_21)是一个高人群密度拥挤场景的人头跟踪数据集,场景包括不同的光线和环境条件下的拥挤的室内和室外场景,所有序列的帧速率都是25fps。
8
<div align="center">
9
  <img src="../../../docs/images/ht_fairmot.gif" width='800'/>
10 11 12 13 14 15
</div>

## 模型库
### FairMOT在HT-21 Training Set上结果
|    骨干网络      |  输入尺寸 |  MOTA  |  IDF1  |  IDS  |   FP  |   FN   |   FPS   |  下载链接 | 配置文件 |
| :--------------| :------- | :----: | :----: | :---: | :----: | :---: | :------: | :----: |:----: |
16
| DLA-34         | 1088x608 |  67.2 |  70.4  |   9403  |  124840  |  255007  |     -   | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_headtracking21.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/mot/headtracking21/fairmot_dla34_30e_1088x608_headtracking21.yml) |
17 18 19 20

### FairMOT在HT-21 Test Set上结果
|    骨干网络      |  输入尺寸 |  MOTA  |  IDF1  |   IDS  |   FP   |   FN   |    FPS   |  下载链接  | 配置文件 |
| :--------------| :------- | :----: | :----: | :----: | :----: | :----: |:-------: | :----: | :----: |
21
| DLA-34         | 1088x608 |  58.2  |  61.3  |  13166   |  141872  |  197074 |    -     | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_headtracking21.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/mot/headtracking21/fairmot_dla34_30e_1088x608_headtracking21.yml) |
22 23

**注意:**
24
 FairMOT使用2个GPU进行训练,每个GPU上batch size为6,训练30个epoch。
25 26 27 28

## 快速开始

### 1. 训练
29
使用2个GPU通过如下命令一键式启动训练
30
```bash
31
python -m paddle.distributed.launch --log_dir=./fairmot_dla34_30e_1088x608_headtracking21/ --gpus 0,1 tools/train.py -c configs/mot/headtracking21/fairmot_dla34_30e_1088x608_headtracking21.yml
32 33 34 35 36 37
```

### 2. 评估
使用单张GPU通过如下命令一键式启动评估
```bash
# 使用PaddleDetection发布的权重
38
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/headtracking21/fairmot_dla34_30e_1088x608_headtracking21.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_headtracking21.pdparams
39 40

# 使用训练保存的checkpoint
41
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/headtracking21/fairmot_dla34_30e_1088x608_headtracking21.yml -o weights=output/fairmot_dla34_30e_1088x608_headtracking21/model_final.pdparams
42 43 44 45 46 47
```

### 3. 预测
使用单个GPU通过如下命令预测一个视频,并保存为视频
```bash
# 预测一个视频
48
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/headtracking21/fairmot_dla34_30e_1088x608_headtracking21.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_headtracking21.pdparams --video_file={your video name}.mp4  --save_videos
49 50 51 52 53 54
```
**注意:**
 请先确保已经安装了[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg`

### 4. 导出预测模型
```bash
55
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/headtracking21/fairmot_dla34_30e_1088x608_headtracking21.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_headtracking21.pdparams
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
```

### 5. 用导出的模型基于Python去预测
```bash
python deploy/python/mot_jde_infer.py --model_dir=output_inference/fairmot_dla34_30e_1088x608_headtracking21 --video_file={your video name}.mp4 --device=GPU --save_mot_txts
```
**注意:**
 跟踪模型是对视频进行预测,不支持单张图的预测,默认保存跟踪结果可视化后的视频,可添加`--save_mot_txts`表示保存跟踪结果的txt文件,或`--save_images`表示保存跟踪结果可视化图片。

## 引用
```
@article{zhang2020fair,
  title={FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking},
  author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu},
  journal={arXiv preprint arXiv:2004.01888},
  year={2020}
}
@InProceedings{Sundararaman_2021_CVPR,
    author    = {Sundararaman, Ramana and De Almeida Braga, Cedric and Marchand, Eric and Pettre, Julien},
    title     = {Tracking Pedestrian Heads in Dense Crowd},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {3865-3875}
}
```