inference_transpiler.py 20.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
18
import numpy as np
19 20 21
from .. import core
from ..framework import Program
from ..executor import global_scope
22 23


24
class InferenceTranspiler(object):
L
Luo Tao 已提交
25
    '''
26 27 28 29 30 31
    Convert the fluid program to optimized inference program.

    There are several optimizations:

      - fuse convolution and batch normalization
      - fuse batch normalization and relu (MKLDNN only)
L
Luo Tao 已提交
32 33

    Examples:
34

L
Luo Tao 已提交
35 36 37 38 39 40 41 42 43
    .. code-block:: python

        # As InferenceTranspiler will modify the original program,
        # please clone before use it.
        inference_transpiler_program = program.clone()
        t = fluid.InferenceTranspiler()
        t.transpile(inference_transpiler_program, place)
    '''

L
Luo Tao 已提交
44
    def transpile(self, program, place, scope=None):
45
        '''
L
Luo Tao 已提交
46 47 48 49 50 51
        Run the transpiler.

        Args:
            program (Program): program to transpile
            place (Place): inference place
            scope (Scope|None): inference Scope
L
Luo Tao 已提交
52
        '''
L
Luo Tao 已提交
53 54 55 56 57 58 59
        if not isinstance(program, Program):
            raise TypeError("program should be as Program type")
        if not isinstance(place, core.CPUPlace) and not isinstance(
                place, core.CUDAPlace):
            raise TypeError("place should be as CPUPlace/CUDAPlace type")
        if scope is None:
            scope = global_scope()
S
sneaxiy 已提交
60
        if not isinstance(scope, core._Scope):
L
Luo Tao 已提交
61
            raise TypeError("scope should be as Scope type or None")
62
        use_mkldnn = bool(os.getenv("FLAGS_use_mkldnn", False))
M
Michal Gallus 已提交
63

64 65 66
        if use_mkldnn:
            self._depthwise_conv_mkldnn(program)

67
        self._fuse_batch_norm(program, place, scope)
68 69
        if use_mkldnn:
            self._fuse_conv_bias_mkldnn(program)
M
Michal Gallus 已提交
70
            self._fuse_conv_relu_mkldnn(program)
71 72 73
            self._fuse_conv_eltwise_mkldnn(program)
            self._fuse_conv_relu_mkldnn(
                program)  # ResNet residual block merging
M
Michal Gallus 已提交
74 75
            self._fuse_bn_relu_mkldnn(program)

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        self._is_test_pass(program)

    def _is_test_pass(self, program):
        '''
        Transpile the program setting is_test = true for all layers and
        inserts is_test attribute to pooling and activation layers.
        As a result some operators might run faster
        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
            if current_op.has_attr("is_test"):
                current_op._set_attr("is_test", True)
            elif current_op.type in [
                    "pool2d", "sigmoid", "logsigmoid", "softshrink", "exp",
                    "brelu", "pow", "leaky_relu", "stanh", "relu", "tanh",
                    "tanh_shrink", "sqrt", "abs", "ceil", "elu", "floor", "cos",
                    "sin", "round", "reciprocal", "hard_shrink", "hard_sigmoid",
                    "relu6", "soft_relu", "swish", "thresholded_relu", "log",
                    "square", "softplus", "softsign"
            ]:
                current_op._set_attr("is_test", True)
            i = i + 1
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    def _depthwise_conv_mkldnn(self, program):
        '''
        Transpile the program by replacing depthwise_conv2d to conv2d for MKLDNN program.
        The result is:
            - before:
                - any_other_op->depthwise_conv->any_other_op
            - after:
                - any_other_op->conv->any_other_op
        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
            if current_op.type == 'depthwise_conv2d':
                current_op.desc.set_type("conv2d")
            i = i + 1

        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()

133 134 135 136
    def _fuse_conv_eltwise_mkldnn(self, program):
        '''
        Transpile the program fusing elementwise_add into conv for MKLDNN
        program. Elementwise add following convolution OP can be fused by adding
137
        'fuse_residual_connection' attribute to convolution OP and replacing its output
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        Tensor with second parameter of elementwise_add.
        The result of fuse is:
            - before:
                - conv->elementwise_add->any_other_op
            - after:
                - conv->any_other_op
        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
            if current_op.type in ['conv2d']:
                next_op = self.block.ops[i + 1]
                if next_op.type == 'elementwise_add':
155 156
                    self._fuse_conv_eltwise(i, current_op, next_op)
                    self.block._remove_op(i + 1)  # Remove old conv
157 158 159 160 161 162 163 164 165
                    self.block._remove_op(i + 1)  # Remove elementwise_add
            i = i + 1
        self._adjust_input()
        self._remove_unused_var()
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()

M
Michal Gallus 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    def _fuse_conv_relu_mkldnn(self, program):
        '''
        Transpile the program by fused relu activation for MKLDNN program.
        Relu activation following convolution OP can be fused by adding
        'fuse_relu' attribute to convolution OP.
        The result of fuse is:
            - before:
                - conv->relu->any_other_op
            - after:
                - conv->any_other_op
        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
            if current_op.type in ['conv2d']:
                next_op = self.block.ops[i + 1]
                if next_op.type == 'relu':
187
                    # modify bnorm OP to include relu
K
Krzysztof Binias 已提交
188
                    current_op._set_attr("fuse_relu", True)
189
                    # remove relu OP
M
Michal Gallus 已提交
190 191 192 193 194 195 196
                    self.block._remove_op(i + 1)
            i = i + 1

        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()
197

M
Michal Gallus 已提交
198
    def _fuse_bn_relu_mkldnn(self, program):
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        '''
        Transpile the program by fused relu activation for MKLDNN program.

        Relu activation following batch norm OP can be fused by adding
        :math:`fuse_with_relu` attribute to batch norm OP.

        The result of fuse is:

        - before:

          - batch_norm->relu->any_other_op

        - after:

          - batch_norm->any_other_op

        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops) - 1:
            current_op = self.block.ops[i]
            if current_op.type in ['batch_norm']:
                next_op = self.block.ops[i + 1]
                if next_op.type == 'relu':
                    # modify bnorm OP to include relu
W
Wu Yi 已提交
227
                    current_op._set_attr("fuse_with_relu", True)
228
                    # remove relu OP
W
Wu Yi 已提交
229
                    self.block._remove_op(i + 1)
230 231 232 233 234 235 236
            i = i + 1

        self._remove_unused_var()
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()
L
Luo Tao 已提交
237

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    def _fuse_conv_bias_mkldnn(self, program):
        '''
        Transpile the program by fused convolution and elementwise_add.

        Replace conv2d and elementwise_add ops with a new conv2d op
        based on an old conv2d op and the :math:`Bias` taken from
        elementwise_add.

        For input :math:`X`:

        - Conv process:            :math:`X = input * W`
        - Elementwise_add process: :math` X = X + bias`

        After fuse into one operation:

        .. math::

            X = input * W + bias

        The operator transformation is:

        - before:

          - conv->elementwise_add->any_other_op

        - after:

          - conv->any_other_op

        The transpile stages are:

        1. Extract bias and output variables from elementwise_add.
        2. Extract Input, Weight and attributes from conv op.
        3. Create a new convolution op based on extracted params.
        4. Remove old conv op.
        5. Remove elementwise_add.
        5. Remove unused variables.

        Args:
            program (Program): program to transpile

        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops) - 2:
            current_op = self.block.ops[i]
            next_op = self.block.ops[i + 1]
            # conv2d with bias
            if current_op.type in ['conv2d'] and \
               next_op.type in ['elementwise_add']:
                self._fuse_conv_bias(i, current_op, next_op)
                self.block._remove_op(i + 1)  # Remove old conv
                self.block._remove_op(i + 1)  # Remove elementwise_add
            i = i + 1

        self._remove_unused_var()
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()

W
Wu Yi 已提交
300
    def _fuse_batch_norm(self, program, place, scope):
L
Luo Tao 已提交
301 302
        '''
        Transpile the program by fused batch normalization.
303 304 305

        The batch normalization followed the convolution or fully connected layer
        can be integrated with them. Doing so will give us a forward acceleration,
306
        especially in environments like mobile or embedded.
307

L
Luo Tao 已提交
308 309
        For input :math:`X`:

310 311
        - Conv process:        :math:`X = input * W + bias`
        - Batch norm process:  :math:`X' = (X - mean) / std`
L
Luo Tao 已提交
312
        - Scale Process:       :math:`Y = a * X' + b`
313 314 315

        After fuse into one operation:

L
Luo Tao 已提交
316 317 318 319
        .. math::

            Y &= (input * W + bias - mean) / std * a + b \\\\
              &= input * a * W / std + ((bias - mean) / std * a + b)
320

321
        The operator transformation is:
L
Luo Tao 已提交
322

323
        - before:
L
Luo Tao 已提交
324

325 326
          - conv->batch_norm->any_other_op (bias == 0)
          - conv->elementwise_add->batch_norm->any_other_op (bias != 0)
327 328

        - after:
L
Luo Tao 已提交
329

330
          - conv->elementwise_add->any_other_op
331

332
        The transpile stages are:
L
Luo Tao 已提交
333

334
        1. insert elementwise_add op when bias == 0.
335
        2. fuse the batch_norm's parameters to conv and elementwise_add operators.
336 337 338
        3. remove batch_norm ops which are not used in any other ops.
        4. adjust the input of any_other_op to be the output of elementwise_add operator.
        5. remove unused variables.
339

L
Luo Tao 已提交
340 341 342 343
        Args:
            program (Program): program to transpile
            place (Place): inference place
            scope (Scope): inference Scope
344

345 346 347
        '''
        self.scope = scope
        self.place = place
348
        self.block = program.block(0)
349
        self.input_map = {}  # store the input names should be adjusted
350

351
        i = 0
352
        while i < len(self.block.ops) - 2:
353
            current_op = self.block.ops[i]
354
            # TODO(luotao1): consider only conv2d now. fc would be delt later.
355
            if current_op.type in ['conv2d']:
356 357
                # TODO(luotao1): consider single chain network now.
                # For branch network, we counldn't use block.ops[i + 1] as
L
Luo Tao 已提交
358
                # the judgment condition.
359
                next_op = self.block.ops[i + 1]
360
                # conv2d without bias
361
                if (next_op.type == 'batch_norm'):
362 363 364
                    # insert bias op
                    bias_op = self._insert_bias_op(i + 1, current_op, next_op)
                    # fuse batch_norm
365
                    self._fuse_param(current_op, next_op, bias_op, 0)
366
                    # remove batch_norm_op
W
Wu Yi 已提交
367
                    self.block._remove_op(i + 2)
368
                    i = i + 1
369 370 371 372 373 374 375
                # conv2d with bias, the next_op.type is elementwise_add
                elif (next_op.type == 'elementwise_add'):
                    next_next_op = self.block.ops[i + 2]
                    if (next_next_op.type == 'batch_norm'):
                        # fuse batch_norm
                        self._fuse_param(current_op, next_next_op, next_op, 1)
                        # remove batch_norm_op
W
Wu Yi 已提交
376
                        self.block._remove_op(i + 2)
377
                        i = i + 1
378
            i = i + 1
379
        self._adjust_input()
380
        self._remove_unused_var()
381 382
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
L
Luo Tao 已提交
383
        # And a better solution will be considered later.
L
Luo Tao 已提交
384
        program = program.clone()
385 386 387 388

    # ====================== private transpiler functions =====================
    def _insert_bias_op(self, index, current_op, bn_op):
        '''
389
        Construct elementwise_add operator for adding bias
390
        and insert it into program.
391

392 393 394 395 396 397 398 399 400 401 402
        :param index: insert location of bias_op
        :type index: Int
        :param current_op: current operator (conv or fc)
        :type current_op: Operator
        :param bn_op: batch norm operator
        :type bn_op: Operator
        :return: bias_op
        :rtype: Operator
        '''
        # The input of bias_op is current_op's output and Bias of bn_op
        # The output of bias_op is bn_op's output
403 404 405 406
        x_var = self.block.var(current_op.output("Output")[0])
        y_var = self.block.var(bn_op.input("Bias")[0])
        out_var = self.block.var(bn_op.output("Y")[0])

W
Wu Yi 已提交
407
        bias_op = self.block._insert_op(
408 409 410 411 412 413
            index,
            type="elementwise_add",
            inputs={"X": x_var,
                    "Y": y_var},
            outputs={"Out": out_var},
            attrs={"axis": 1})  # dim_start=1
414 415
        return bias_op

416
    def _fuse_param(self, current_op, bn_op, bias_op, with_bias):
417 418
        '''
        fuse the batch_norm_op' parameters to current_op (conv or fc)
419

420 421 422 423 424 425
        :param current_op: current operator (conv or fc)
        :type current_op: Operator
        :param bn_op: batch norm operator
        :type bn_op: Operator
        :param bias_op: elementwise_add operator for adding bias
        :type bias_op: Operator
426
        :param with_bias: If current operator has bias, with_bias = 1; otherwise 0.
427
        :type with_bias: Int
428 429
        '''

L
Luo Tao 已提交
430 431 432 433 434 435 436 437 438 439 440
        def _update_param(op, old_param_name, new_param):
            # For the sake of remaining the original variables the same as before,
            # create new variables in scope to store the new parameters.
            old_param_name = old_param_name[0]
            old_var = self.block.vars[old_param_name]
            new_param_name = old_param_name + '_fuse_bn'
            new_var = self.block.create_parameter(
                name=new_param_name.encode('ascii'),
                type=old_var.type,
                dtype=old_var.dtype,
                shape=old_var.shape)
W
Wu Yi 已提交
441
            op._rename_input(old_param_name, new_param_name)
L
Luo Tao 已提交
442 443 444 445
            self.scope.var(new_param_name)

            tensor = self.scope.find_var(new_param_name).get_tensor()
            tensor.set(np.array(new_param), self.place)
446 447

        def _load_param(param_name):
L
Luo Tao 已提交
448
            return np.array(self.scope.find_var(param_name[0]).get_tensor())
449 450 451 452 453 454 455 456 457 458 459 460

        bias_bn = _load_param(bn_op.input("Bias"))  #Bias
        scale_bn = _load_param(bn_op.input("Scale"))  #Scale
        mean_bn = _load_param(bn_op.input("Mean"))  #Mean
        var_bn = _load_param(bn_op.input("Variance"))  #Variance

        # TODO(luotao1): consider only conv2d now. fc would be delt later.
        current_param = _load_param(current_op.input("Filter"))
        std_bn = np.float32(np.sqrt(np.add(var_bn, 1e-5)))
        tmp = np.float32(np.divide(scale_bn, std_bn))

        # add bias of batch_norm_op to conv2d
461 462 463 464
        if with_bias:
            bias = _load_param(bias_op.input("Y"))
        else:
            bias = np.zeros(bias_bn.shape)
465 466 467 468 469 470 471 472 473
        bias = np.float32(
            np.add(np.multiply(np.subtract(bias, mean_bn), tmp), bias_bn))

        # re-compute weight of conv2d
        tmp = tmp.reshape(tmp.shape[0], -1)
        dst_param = current_param.reshape((tmp.shape[0], -1))
        dst_param = np.float32(np.multiply(dst_param, tmp))
        dst_param = dst_param.reshape(current_param.shape)

L
Luo Tao 已提交
474 475 476
        # update parameters
        _update_param(current_op, current_op.input("Filter"), dst_param)
        _update_param(bias_op, bias_op.input("Y"), bias)
477

478 479 480
        # collect the renamed input
        self.input_map[bn_op.output("Y")[0]] = bias_op.output("Out")[0]

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    def _fuse_conv_bias(self, index, conv_op, elementwise_add_op):
        '''
        fuse the conv op with elementwise_add

        :param index: index of the conv_op in ops list
        :type index: Int
        :param conv_op: convolution operator
        :type conv_op: Operator
        :param elementwise_add_op: convolution's bias operator
        :type elementwise_add_op: Operator
        '''

        bias_var = self.block.var(elementwise_add_op.input("Y")[0])
        out_var = self.block.var(elementwise_add_op.output("Out")[0])
        filter_var = self.block.var(conv_op.input("Filter")[0])
        in_var = self.block.var(conv_op.input("Input")[0])
        attrs = {name: conv_op.attr(name) for name in conv_op.attr_names}

        self.block._insert_op(
            index,
            type="conv2d",
            inputs={"Input": in_var,
                    "Filter": filter_var,
                    "Bias": bias_var},
            outputs={"Output": out_var},
            attrs=attrs)

508
    def _fuse_conv_eltwise(self, index, conv_op, eltwise_op):
509 510 511 512 513 514 515 516 517
        '''
        fuse the conv op with elementwise_add

        :param conv_op: convolution operator
        :type conv_op: Operator
        :param eltwise_op: operator adding data from skip connection
        :type eltwise_op: Operator
        '''

518 519 520 521 522 523 524 525 526
        eltwise_input = "X"
        if eltwise_op.input("X")[0] == conv_op.output("Output")[0]:
            eltwise_input = "Y"

        residual_var = self.block.vars[eltwise_op.input(eltwise_input)[0]]
        out_var = self.block.vars[eltwise_op.output("Out")[0]]
        filter_var = self.block.vars[conv_op.input("Filter")[0]]
        in_var = self.block.vars[conv_op.input("Input")[0]]
        bias_var = self.block.vars[conv_op.input("Bias")[0]]
527

528
        conv_op._set_attr("fuse_residual_connection", True)
529 530 531 532 533 534 535 536 537 538 539 540 541
        attrs = {name: conv_op.attr(name) for name in conv_op.attr_names}

        self.block._insert_op(
            index,
            type="conv2d",
            inputs={
                "Input": in_var,
                "Filter": filter_var,
                "Bias": bias_var,
                "ResidualData": residual_var
            },
            outputs={"Output": out_var},
            attrs=attrs)
542

543
    def _adjust_input(self):
544 545 546 547
        for i in range(len(self.block.ops)):
            current_op = self.block.ops[i]
            for input_arg in current_op.input_arg_names:
                if input_arg in self.input_map:
W
Wu Yi 已提交
548 549
                    current_op._rename_input(input_arg,
                                             self.input_map[input_arg])
550

551 552
    def _remove_unused_var(self):
        '''
553
        remove unused varibles in program
554 555
        '''
        args = []
556 557 558 559
        for i in range(len(self.block.ops)):
            current_op = self.block.ops[i]
            args += current_op.input_arg_names
            args += current_op.output_arg_names
560 561
        args = list(set(args))  # unique the input and output arguments

562
        for var in list(self.block.vars.keys()):
563
            if var not in args:
W
Wu Yi 已提交
564
                self.block._remove_var(var)