fusion_gru_op.cc 16.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/fused/fusion_gru_op.h"
T
tensor-tang 已提交
16
#include <cstring>  // for memcpy
T
tensor-tang 已提交
17
#include <string>
18
#include "paddle/fluid/operators/jit/kernels.h"
T
tensor-tang 已提交
19 20
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
21 22 23 24 25 26
#include "paddle/fluid/operators/math/sequence2batch.h"

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
27 28
  PADDLE_ENFORCE(ctx->HasInput("X"), "Assert only one Input(X) of GRU.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
T
tensor-tang 已提交
29
                 "Assert only one Input(WeightX) of GRU.");
30
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
T
tensor-tang 已提交
31
                 "Assert only one Input(WeightH) of GRU.");
32 33
  PADDLE_ENFORCE(ctx->HasOutput("XX"), "Assert only one Output(XX) of GRU.");
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
34
                 "Assert only one Output(Hidden) of GRU.");
T
tensor-tang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 3;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
                    "should be %d.",
                    frame_size);
  PADDLE_ENFORCE_EQ(wh_dims[1], 3 * frame_size,
                    "The second dimension of Input(WeightH) "
                    "should be 3 * %d.",
                    frame_size);

60
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
61 62 63 64
    auto h0_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
                      "The width of H0 must be equal to frame_size.");
  }
65
  if (ctx->HasInput("Bias")) {
T
tensor-tang 已提交
66 67 68 69 70
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");
    PADDLE_ENFORCE_EQ(b_dims[1], frame_size * 3,
T
tensor-tang 已提交
71 72
                      "The shape of Bias must be [1, frame_size * 3].");
  }
T
tensor-tang 已提交
73 74 75
  framework::DDim out_dims({x_dims[0], frame_size});
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->ShareLoD("X", "Hidden");
T
tensor-tang 已提交
76
  int xx_width;
T
tensor-tang 已提交
77
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
78 79 80
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
81
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
T
tensor-tang 已提交
82
                   "Assert only one Output(ReorderedH0) of GRU.");
83
    PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
T
tensor-tang 已提交
84
                   "Assert only one Output(BatchedInput) of GRU.");
85
    PADDLE_ENFORCE(ctx->HasOutput("BatchedOut"),
T
tensor-tang 已提交
86
                   "Assert only one Output(BatchedOut) of GRU.");
T
tensor-tang 已提交
87 88
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedOut", out_dims);
T
tensor-tang 已提交
89
  }
T
tensor-tang 已提交
90 91
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
92 93 94 95 96 97 98 99 100 101
}

framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

void FusionGRUOpMaker::Make() {
T
tensor-tang 已提交
102 103
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
104
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
105 106
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
T
tensor-tang 已提交
107 108 109 110 111
  AddInput("H0",
           "(Tensor, optional) The initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size, D is the hidden size.")
      .AsDispensable();
T
tensor-tang 已提交
112 113 114 115
  AddInput("WeightX",
           "(Tensor) The FC weight with shape (M x 3D),"
           "where M is the dim size of x, D is the hidden size. ");
  AddInput("WeightH",
T
tensor-tang 已提交
116 117 118 119 120
           "(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
           "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
           "Acutally they are D x 2D and D x D two part weights."
           "{W_update, W_reset; W_state}"
           "{D x (D + D); D x D}");
T
tensor-tang 已提交
121
  AddInput("Bias",
T
tensor-tang 已提交
122 123 124
           "(Tensor, optional) (1 x 3D)."
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
T
tensor-tang 已提交
125
      .AsDispensable();
T
tensor-tang 已提交
126 127
  AddOutput("ReorderedH0", "(Tensor) (N x D), which N is the min-batch size.")
      .AsIntermediate();
T
tensor-tang 已提交
128
  AddOutput("XX",
T
tensor-tang 已提交
129
            "(LoDTensor) the result after X * WeightX (size is T x 3D)"
T
tensor-tang 已提交
130 131 132
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size, M is the dim size of x input.")
T
tensor-tang 已提交
133
      .AsIntermediate();
T
tensor-tang 已提交
134 135 136 137
  AddOutput("BatchedInput",
            "(LoDTensor) This is the batched result of input X"
            "or the batched result after fc, shape (T x 3D)")
      .AsIntermediate();
T
tensor-tang 已提交
138
  AddOutput("BatchedOut", "(LoDTensor) (T X D) save batched hidden.")
T
tensor-tang 已提交
139
      .AsIntermediate();
T
tensor-tang 已提交
140
  AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
T
tensor-tang 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed GRU.")
      .SetDefault(false);
T
tensor-tang 已提交
154 155 156 157
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute GRU.")
      .SetDefault(true);
T
tensor-tang 已提交
158 159 160 161 162 163 164
  AddComment(R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU, 
more details can refer to GRU op.
)DOC");
}

T
tensor-tang 已提交
165
template <typename T>
T
tensor-tang 已提交
166 167
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
T
tensor-tang 已提交
168
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
169
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
170 171 172 173 174 175
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }

T
tensor-tang 已提交
176 177 178 179 180 181 182 183 184 185
#define INIT_BASE_DEFINES                  \
  auto* x = ctx.Input<LoDTensor>("X");     \
  auto* wh = ctx.Input<Tensor>("WeightH"); \
  auto* xx = ctx.Output<LoDTensor>("XX");  \
  auto x_lod = x->lod();                   \
  auto x_dims = x->dims();   /* T x M*/    \
  auto wh_dims = wh->dims(); /* D x 3D*/   \
  const int total_T = x_dims[0];           \
  const int D3 = wh_dims[1]

T
tensor-tang 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#define INIT_OTHER_DEFINES                                                    \
  auto* h0 = ctx.Input<Tensor>("H0");                                         \
  auto* wx = ctx.Input<Tensor>("WeightX");                                    \
  auto* bias = ctx.Input<Tensor>("Bias");                                     \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden");                         \
  bool is_reverse = ctx.Attr<bool>("is_reverse");                             \
  const int M = x_dims[1];                                                    \
  const int D = wh_dims[0];                                                   \
  const int D2 = D * 2;                                                       \
  const jit::gru_attr_t attr(                                                 \
      D, jit::to_kerneltype(ctx.Attr<std::string>("gate_activation")),        \
      jit::to_kerneltype(ctx.Attr<std::string>("activation")));               \
  jit::gru_t one_step;                                                        \
  auto ComputeH1 =                                                            \
      jit::Get<jit::gruh1, jit::GRUTuples<T>, platform::CPUPlace>(attr);      \
  auto ComputeHtPart1 =                                                       \
      jit::Get<jit::gruhtpart1, jit::GRUTuples<T>, platform::CPUPlace>(attr); \
  auto ComputeHtPart2 =                                                       \
      jit::Get<jit::gruhtpart2, jit::GRUTuples<T>, platform::CPUPlace>(attr); \
  const T* x_data = x->data<T>();                                             \
  const T* wx_data = wx->data<T>();                                           \
  const T* wh_data = wh->data<T>();                                           \
  auto place = ctx.GetPlace();                                                \
T
tensor-tang 已提交
209
  T* xx_data = xx->mutable_data<T>(place)
T
tensor-tang 已提交
210

T
tensor-tang 已提交
211 212
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
213 214
    INIT_BASE_DEFINES;
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
215
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
216
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
T
tensor-tang 已提交
217
    const T* wh_state_data = wh_data + D * D2;
T
tensor-tang 已提交
218
    T* hidden_out_data = hidden_out->mutable_data<T>(place);
T
tensor-tang 已提交
219 220
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
T
tensor-tang 已提交
221 222
                                      xx_data,
                                      bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

    int xx_offset = D3;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 3;
      hidden_out_data = hidden_out_data + offset;
      xx_offset = -D3;
      gate_offset = -D;
    }
    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
    };
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
240
      const T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
241 242 243 244
      int tstart = 0;
      if (h0_data) {
        prev_hidden_data = h0_data + bid * D;
      } else {
245 246
        one_step.gates = xx_data;
        one_step.ht = hidden_out_data;
247
        ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
248 249 250 251 252 253 254 255 256
        prev_hidden_data = hidden_out_data;
        tstart = 1;
        move_step();
      }
      for (int step = tstart; step < seq_len; ++step) {
        // gemm prev * (Wu + Wr)
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D2, D, static_cast<T>(1),
                  prev_hidden_data, D, wh_data, D2, static_cast<T>(1), xx_data,
                  D3);
257 258 259
        one_step.gates = xx_data;
        one_step.ht_1 = prev_hidden_data;
        one_step.ht = hidden_out_data;
260
        ComputeHtPart1(&one_step, &attr);
T
tensor-tang 已提交
261 262 263 264
        // gemm rt * Ws
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D, D, static_cast<T>(1),
                  hidden_out_data, D, wh_state_data, D, static_cast<T>(1),
                  xx_data + D2, D3);
265
        ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
266 267 268 269 270 271 272 273
        // save prev
        prev_hidden_data = hidden_out_data;
        move_step();
      }
    }
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
T
tensor-tang 已提交
274
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
275 276
    INIT_BASE_DEFINES;
    if (x_lod[0].size() == 2) {
277
      xx->Resize({total_T, D3});
T
tensor-tang 已提交
278 279 280
      SeqCompute(ctx);
      return;
    }
T
tensor-tang 已提交
281
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
282 283 284
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_out = ctx.Output<LoDTensor>("BatchedOut");
T
tensor-tang 已提交
285 286 287
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_out_data = batched_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
T
tensor-tang 已提交
288 289 290
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
291 292 293 294
    if (M > D3) {
      math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
                                        xx_data,
                                        bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
295
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
296 297
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
298
      batched_input->set_lod(xx->lod());
T
tensor-tang 已提交
299 300 301
      math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, xx_data, wx_data,
                                        batched_input_data,
                                        bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
302 303
    }

T
tensor-tang 已提交
304 305 306 307
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
T
tensor-tang 已提交
308

T
tensor-tang 已提交
309
    int tstart = 0;
T
tensor-tang 已提交
310
    T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
311
    if (h0) {
T
tensor-tang 已提交
312
      // reorder h0
T
tensor-tang 已提交
313
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
T
tensor-tang 已提交
314 315 316 317 318 319 320
      const T* h0_data = h0->data<T>();
      prev_hidden_data = reordered_h0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
      }
T
tensor-tang 已提交
321
    } else {
T
tensor-tang 已提交
322 323 324 325 326
      // compute without h0
      T* cur_in_data = batched_input_data;
      T* cur_out_data = batched_out_data;
      // W: {W_update, W_reset; W_state}
      for (int i = 0; i < max_bs; ++i) {
327 328
        one_step.gates = cur_in_data;
        one_step.ht = cur_out_data;
329
        ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
330 331 332 333 334 335
        // add offset
        cur_in_data += D3;
        cur_out_data += D;
      }
      tstart = 1;
      prev_hidden_data = batched_out_data;
T
tensor-tang 已提交
336
    }
T
tensor-tang 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350
    // Then start from next
    const T* wh_state_data = wh_data + D * D2;
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    batched_input_data = batched_input_data + tstart * max_bs * D3;
    batched_out_data = batched_out_data + tstart * max_bs * D;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      // gemm prev * (Wu + Wr)
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D2, D, static_cast<T>(1),
                prev_hidden_data, D, wh_data, D2, static_cast<T>(1),
                batched_input_data, D3);

      T* cur_batched_data = batched_input_data;
351
      T* cur_out_data = batched_out_data;
T
tensor-tang 已提交
352 353
      T* cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
354 355 356
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
357
        ComputeHtPart1(&one_step, &attr);
358

T
tensor-tang 已提交
359 360
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
361
        cur_out_data += D;
T
tensor-tang 已提交
362 363
      }

T
tensor-tang 已提交
364
      cur_batched_data = batched_input_data;
365
      cur_out_data = batched_out_data;
T
tensor-tang 已提交
366
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D, D, static_cast<T>(1),
367
                cur_out_data, D, wh_state_data, D, static_cast<T>(1),
T
tensor-tang 已提交
368 369 370 371
                cur_batched_data + D2, D3);

      cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
372 373 374
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
375
        ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
376 377 378
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
        cur_out_data += D;
T
tensor-tang 已提交
379
      }
T
tensor-tang 已提交
380 381 382
      prev_hidden_data = batched_out_data;
      batched_out_data = cur_out_data;
      batched_input_data = cur_batched_data;
T
tensor-tang 已提交
383
    }
T
tensor-tang 已提交
384

T
tensor-tang 已提交
385
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
386 387
    batched_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_out, hidden_out);
T
tensor-tang 已提交
388
  }
T
tensor-tang 已提交
389 390
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_DEFINES
T
tensor-tang 已提交
391 392 393 394 395 396 397 398
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
T
tensor-tang 已提交
399 400
REGISTER_OP_CPU_KERNEL(fusion_gru, ops::FusionGRUKernel<float>,
                       ops::FusionGRUKernel<double>);