test_matrixCompare.cpp 40.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef PADDLE_ONLY_CPU
/// This unittest checks GpuMatrix/CpuMatrix get same result, so disable when
/// only cpu version.

#include <gtest/gtest.h>
Y
Yu Yang 已提交
20 21 22
#include "TensorCheck.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
23
#include "paddle/testing/TestUtil.h"
L
liaogang 已提交
24
#include "paddle/utils/DynamicLoader.h"
25
#include "paddle/utils/Stat.h"
Y
Yu Yang 已提交
26
#include "paddle/utils/Util.h"
27

Z
zhangjinchao01 已提交
28 29
using namespace paddle;  // NOLINT
using namespace std;     // NOLINT
30 31
using autotest::TensorCheckEqual;
using autotest::TensorCheckErr;
L
liaogang 已提交
32

Z
zhangjinchao01 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
void testMatrixMaxSequence(int batchSize, int inputDim) {
  // forward
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  IVectorPtr cpuSequence;
  generateSequenceStartPositions(batchSize, cpuSequence);
  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
  gpuSequence->copyFrom(*cpuSequence);

  int newBatchSize = cpuSequence->getSize() - 1;
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(newBatchSize, inputDim);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(newBatchSize, inputDim);
  cpuOutput->zero();
  gpuOutput->zero();

  IVectorPtr cpuIndex = nullptr;
  IVectorPtr gpuIndex = nullptr;
  IVector::resizeOrCreate(cpuIndex, newBatchSize * inputDim, false);
  IVector::resizeOrCreate(gpuIndex, newBatchSize * inputDim, true);
  cpuIndex->zeroMem();
  gpuIndex->zeroMem();

  cpuOutput->maxSequenceForward(*cpuInput, *cpuSequence, *cpuIndex);
  gpuOutput->maxSequenceForward(*gpuInput, *gpuSequence, *gpuIndex);

61 62
  TensorCheckEqual(*cpuOutput, *gpuOutput);
  TensorCheckEqual(*cpuIndex, *gpuIndex);
Z
zhangjinchao01 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

  // backward
  MatrixPtr cpuOutputGrad = std::make_shared<CpuMatrix>(newBatchSize, inputDim);
  MatrixPtr gpuOutputGrad = std::make_shared<GpuMatrix>(newBatchSize, inputDim);
  cpuOutputGrad->randomizeUniform();
  gpuOutputGrad->copyFrom(*cpuOutputGrad);

  MatrixPtr cpuInputGrad = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInputGrad = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInputGrad->randomizeUniform();
  gpuInputGrad->copyFrom(*cpuInputGrad);

  cpuInputGrad->maxSequenceBackward(*cpuOutputGrad, *cpuSequence, *cpuIndex);
  gpuInputGrad->maxSequenceBackward(*gpuOutputGrad, *gpuSequence, *gpuIndex);

78
  TensorCheckEqual(*cpuInputGrad, *gpuInputGrad);
Z
zhangjinchao01 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
}

TEST(Matrix, maxSequence) {
  for (auto batchSize : {1, 10, 128, 1000, 6000}) {
    for (auto inputDim : {1, 32, 100, 512}) {
      VLOG(3) << " batchSize=" << batchSize << " inputDim=" << inputDim;
      testMatrixMaxSequence(batchSize, inputDim);
    }
  }
}

void testMatrixGetSum(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

#ifndef PADDLE_TYPE_DOUBLE
  int x = log10(height * width);
  real err = 1e-6 * pow(10, x);
#else
  real err = 1e-8;
#endif

  real cpuSum = cpuInput->getSum();
  real gpuSum = gpuInput->getSum();

  EXPECT_LE(fabs(cpuSum - gpuSum), err);
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
void testMatrixGetMinMax(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  real cpuMin = cpuInput->getMin();
  real gpuMin = gpuInput->getMin();
  real cpuMax = cpuInput->getMax();
  real gpuMax = gpuInput->getMax();

  EXPECT_EQ(cpuMin, gpuMin);
  EXPECT_EQ(cpuMax, gpuMax);
}

Z
zhangjinchao01 已提交
124 125 126 127 128 129 130 131 132 133 134 135
void testMatrixZeroAtOffset(int height, int width) {
  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr cpuTest = std::make_shared<CpuMatrix>(height, width);

  cpuA->randomizeUniform();
  gpuA->copyFrom(*cpuA);
  cpuTest->copyFrom(*cpuA);

  int columnOffset = rand() % width;  // NOLINT we just use rand() for test.
  int numColumns = rand() % (width - columnOffset);  // NOLINT

136 137
  if (numColumns == 0) return;

Z
zhangjinchao01 已提交
138 139 140 141 142 143 144 145 146 147 148
  cpuA->zeroAtOffset(columnOffset, numColumns);
  gpuA->zeroAtOffset(columnOffset, numColumns);

  /* cpuTest */
  real* a = cpuTest->getData() + columnOffset;
  for (int64_t i = 0; i < height; ++i) {
    for (int64_t j = 0; j < numColumns; ++j) {
      a[i * width + j] = 0;
    }
  }

149 150
  TensorCheckEqual(*cpuA, *gpuA);
  TensorCheckEqual(*cpuA, *cpuTest);
Z
zhangjinchao01 已提交
151 152
}

X
xutianbing 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166
void testMatrixDeepSwap(int height, int width) {
  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuCopyA = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuCopyB = std::make_shared<CpuMatrix>(height, width);

  cpuA->randomizeUniform();
  cpuB->randomizeUniform();
  cpuCopyA->copyFrom(*cpuA);
  cpuCopyB->copyFrom(*cpuB);

  // swap matrix cpuA and cpuB
  cpuA->deepSwap(*cpuB);

H
hedaoyuan 已提交
167 168
  TensorCheckEqual(*cpuA, *cpuCopyB);
  TensorCheckEqual(*cpuB, *cpuCopyA);
X
xutianbing 已提交
169 170
}

Z
zhangjinchao01 已提交
171 172 173 174 175 176 177 178 179
void testMatrixTranspose(int height, int width) {
  MatrixPtr cpu = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpu = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr cpuT = std::make_shared<CpuMatrix>(width, height);
  MatrixPtr gpuT = std::make_shared<GpuMatrix>(width, height);

  cpu->randomizeUniform();
  gpu->copyFrom(*cpu);
  cpu->transpose(cpuT, false);
H
Haonan 已提交
180
  gpu->transpose(gpuT, true);
Z
zhangjinchao01 已提交
181

182
  TensorCheckEqual(*cpuT, *gpuT);
Z
zhangjinchao01 已提交
183 184
}

H
Haonan 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
void testMatrixRotate(int height, int width) {
  MatrixPtr cpu = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpu = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr cpuR = std::make_shared<CpuMatrix>(width, height);
  MatrixPtr gpuR = std::make_shared<GpuMatrix>(width, height);

  cpu->randomizeUniform();
  gpu->copyFrom(*cpu);

  cpu->rotate(cpuR, false, true);
  gpu->rotate(gpuR, true, true);
  TensorCheckEqual(*cpuR, *gpuR);

  cpu->rotate(cpuR, true, false);
  gpu->rotate(gpuR, false, false);
  TensorCheckEqual(*cpuR, *gpuR);
}

L
lzhao4ever 已提交
203 204 205 206 207 208
void testMatrixInverse(int height) {
  MatrixPtr cpu = std::make_shared<CpuMatrix>(height, height);
  MatrixPtr gpu = std::make_shared<GpuMatrix>(height, height);
  MatrixPtr cpuI = std::make_shared<CpuMatrix>(height, height);
  MatrixPtr gpuI = std::make_shared<GpuMatrix>(height, height);

209
  /* Make matrix well conditioned: cpu * cpuT + Identity */
L
lzhao4ever 已提交
210
  cpu->randomizeUniform();
211 212
  MatrixPtr cpuT = cpu->getTranspose();
  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, height);
213
  outputCheck->mul(*cpu, *cpuT);
214 215 216
  cpu->setDiag(1.0);
  cpu->add(*outputCheck);

L
lzhao4ever 已提交
217
  gpu->copyFrom(*cpu);
218
  cpu->inverse(cpuI, true);
L
lzhao4ever 已提交
219 220
  gpu->inverse(gpuI, false);

221
  TensorCheckErr(*cpuI, *gpuI);
L
lzhao4ever 已提交
222

223
  outputCheck->mul(*cpu, *cpuI);
224
  cpu->setDiag(1.0);
225
  TensorCheckErr(*cpu, *outputCheck);
L
lzhao4ever 已提交
226 227
}

Z
zhangjinchao01 已提交
228
TEST(Matrix, unary) {
L
lzhao4ever 已提交
229 230
  for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
    for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
Z
zhangjinchao01 已提交
231 232
      VLOG(3) << " height=" << height << " width=" << width;

233
      testMatrixDeepSwap(height, width);
234
      testMatrixZeroAtOffset(height, width);
Z
zhangjinchao01 已提交
235 236
      testMatrixGetSum(height, width);
      testMatrixTranspose(height, width);
H
Haonan 已提交
237
      testMatrixRotate(height, width);
Z
zhangjinchao01 已提交
238
    }
L
liaogang 已提交
239
#ifdef LAPACK_FOUND
L
liaogang 已提交
240
    // inverse matrix
241
    testMatrixInverse(height);
L
liaogang 已提交
242
#else
L
liaogang 已提交
243 244
    LOG(WARNING) << "Cannot run Matrix Inverse Unit Test.\n"
                 << "Failed to find lapack library in current system.\n"
L
liaogang 已提交
245 246 247 248 249
                 << "To address this issue, Please adopt one of the following "
                    "approaches: \n"
                 << "1. Simply issue `sudo apt-get install liblapacke-dev` to "
                    "avoid re-build source code. \n"
                 << "2. Install MKL/Openblas/ATLAS and re-build PaddlePaddle "
L
liaogang 已提交
250
                    "source code.";
L
liaogang 已提交
251
#endif
Z
zhangjinchao01 已提交
252 253 254
  }
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
void testMatrixSoftmax(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);

  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);
  cpuOutput->zero();
  gpuOutput->zero();
  cpuInput->softmax(*cpuOutput);
  gpuInput->softmax(*gpuOutput);

  TensorCheckErr(*cpuOutput, *gpuOutput);
}

Z
zhangjinchao01 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
void testSequenceSoftmax(int batchSize) {
  // forward
  int inputDim = 1;
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  IVectorPtr cpuSequence;
  generateSequenceStartPositions(batchSize, cpuSequence);
  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
  gpuSequence->copyFrom(*cpuSequence);

  cpuInput->sequenceSoftmax(*cpuInput, *cpuSequence);
  gpuInput->sequenceSoftmax(*gpuInput, *gpuSequence);

287
  TensorCheckErr(*cpuInput, *gpuInput);
Z
zhangjinchao01 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
}

void testMatrixSoftmaxThreshold(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);

  cpuInput->randomizeUniform();
  cpuInput->getData()[0] = 100.0;
  gpuInput->copyFrom(*cpuInput);
  cpuOutput->zero();
  gpuOutput->zero();
  cpuInput->softmax(*cpuOutput);
  gpuInput->softmax(*gpuOutput);

  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
  outputCheck->copyFrom(*gpuOutput);
  // check output zero
  int cpuCount = 0;
  int gpuCount = 0;
  auto zeroNum = [](MatrixPtr out, int& count) {
    for (size_t i = 0; i < out->getHeight(); i++) {
      for (size_t j = 0; j < out->getWidth(); j++) {
        if (out->getElement(i, j) == 0) count++;
      }
    }
  };
  zeroNum(cpuOutput, cpuCount);
  zeroNum(outputCheck, gpuCount);
  EXPECT_EQ(cpuCount, 0) << "Cpu softmax output value 0";
  EXPECT_EQ(gpuCount, 0) << "Gpu softmax output value 0";
}

void testMatrixSoftmaxBp(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);

  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);
  cpuOutput->randomizeUniform();
  gpuOutput->copyFrom(*cpuOutput);
  gpuOutput->softmaxBackward(*gpuInput);

  MatrixPtr sftMaxSum = std::make_shared<CpuMatrix>(height, 1);
  MatrixPtr sftMaxDot = std::make_shared<CpuMatrix>(height, width);
  sftMaxDot->dotMul(*cpuOutput, *cpuInput);
  sftMaxSum->colMerge(*sftMaxDot);
  cpuOutput->softmaxDerivative(*cpuInput, *sftMaxSum);

340
  TensorCheckErr(*cpuOutput, *gpuOutput);
Z
zhangjinchao01 已提交
341 342 343 344 345 346 347
}

TEST(Matrix, softmax) {
  for (auto height : {1, 11, 73, 128, 200}) {
    for (auto width : {1, 32, 100, 512, 1000}) {
      VLOG(3) << " height=" << height << " width=" << width;

348
      testMatrixSoftmax(height, width);
Z
zhangjinchao01 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
      testMatrixSoftmaxBp(height, width);
      testMatrixSoftmaxThreshold(height, width);
    }
    testSequenceSoftmax(height);
  }
}

void testMatrixAddToRows(int numSamples, int tableSize, int inputDim) {
  MatrixPtr cpuTable = std::make_shared<CpuMatrix>(tableSize, inputDim);
  MatrixPtr gpuTable = std::make_shared<GpuMatrix>(tableSize, inputDim);
  cpuTable->randomizeUniform();
  gpuTable->copyFrom(*cpuTable);

  IVectorPtr cpuIds;
  IVectorPtr gpuIds;
  cpuIds = VectorT<int>::create(numSamples, false);
  gpuIds = VectorT<int>::create(numSamples, true);
  cpuIds->rand(tableSize);
  gpuIds->copyFrom(*cpuIds);

  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(numSamples, inputDim);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(numSamples, inputDim);
  cpuOutput->randomizeUniform();
  gpuOutput->copyFrom(*cpuOutput);

  cpuOutput->addToRows(*cpuTable, *cpuIds);
  gpuOutput->addToRows(*gpuTable, *gpuIds);

377
  TensorCheckErr(*cpuTable, *gpuTable);
Z
zhangjinchao01 已提交
378 379 380 381 382 383 384
}

TEST(Matrix, tableProjection) {
  for (auto numSamples : {10, 100, 1000, 10000, 80000}) {
    for (auto tableSize : {10, 100}) {
      for (auto inputDim : {20, 50}) {
        VLOG(3) << " numSamples=" << numSamples << " tableSize=" << tableSize
385
                << " inputDim=" << inputDim;
Z
zhangjinchao01 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
        testMatrixAddToRows(numSamples, tableSize, inputDim);
      }
    }
  }
}

void testMatrixMul(bool transa, bool transb, int dimM, int dimN, int dimK) {
  int heightA = transa == false ? dimM : dimK;
  int widthA = transa == false ? dimK : dimM;
  int heightB = transb == false ? dimK : dimN;
  int widthB = transb == false ? dimN : dimK;
  int heightC = dimM;
  int widthC = dimN;

  MatrixPtr cpuA = std::make_shared<CpuMatrix>(heightA, widthA, transa);
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(heightB, widthB, transb);
  MatrixPtr cpuC = std::make_shared<CpuMatrix>(heightC, widthC);
  MatrixPtr gpuA = std::make_shared<GpuMatrix>(heightA, widthA, transa);
  MatrixPtr gpuB = std::make_shared<GpuMatrix>(heightB, widthB, transb);
  MatrixPtr gpuC = std::make_shared<GpuMatrix>(heightC, widthC);

  real alpha = 1.5;
  real beta = 2.0;
  cpuA->randomizeUniform();
  cpuB->randomizeUniform();
  cpuC->randomizeUniform();
  gpuA->copyFrom(*cpuA);
  gpuB->copyFrom(*cpuB);
  gpuC->copyFrom(*cpuC);

416 417
  cpuC->mul(*cpuA, *cpuB, alpha, beta);
  gpuC->mul(*gpuA, *gpuB, alpha, beta);
Z
zhangjinchao01 已提交
418

419
  TensorCheckErr(*cpuC, *gpuC);
Z
zhangjinchao01 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
}

void testSubMatrixMul(bool transa, bool transb, int dimM, int dimN, int dimK) {
  int heightA = transa == false ? dimM : dimK;
  int widthA = transa == false ? dimK : dimM;
  int heightB = transb == false ? dimK : dimN;
  int widthB = transb == false ? dimN : dimK;
  int heightC = dimM;
  int widthC = dimN;

  MatrixPtr cpuA = std::make_shared<CpuMatrix>(heightA, widthA, transa);
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(heightB, widthB, transb);
  MatrixPtr cpuC = std::make_shared<CpuMatrix>(heightC, widthC);
  MatrixPtr gpuA = std::make_shared<GpuMatrix>(heightA, widthA, transa);
  MatrixPtr gpuB = std::make_shared<GpuMatrix>(heightB, widthB, transb);
  MatrixPtr gpuC = std::make_shared<GpuMatrix>(heightC, widthC);

  real alpha = 1.5;
  real beta = 2.0;
  cpuA->randomizeUniform();
  cpuB->randomizeUniform();
  cpuC->randomizeUniform();
  gpuA->copyFrom(*cpuA);
  gpuB->copyFrom(*cpuB);
  gpuC->copyFrom(*cpuC);

  auto subSize = [](int& start, int& end, int dim) {
    if (dim == 1) {
      start = 0;
      end = dim;
    } else {
      int subDim = rand() % (dim - 1) + 1;  // NOLINT
      start = rand() % (dim - subDim);      // NOLINT
      end = start + subDim;
    }
  };

457 458 459 460 461 462
  auto subMatrix = [](MatrixPtr& sub,
                      MatrixPtr matrix,
                      size_t startRow,
                      size_t endRow,
                      size_t startCol,
                      size_t endCol) {
Z
zhangjinchao01 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
    if (!matrix->isTransposed()) {
      sub = matrix->subMatrix(startRow, endRow, startCol, endCol);
    } else {
      sub = matrix->subMatrix(startCol, endCol, startRow, endRow);
    }
  };

  int startM, endM;
  int startN, endN;
  int startK, endK;
  subSize(startM, endM, dimM);
  subSize(startN, endN, dimN);
  subSize(startK, endK, dimK);

  MatrixPtr subCpuA;
  MatrixPtr subCpuB;
  MatrixPtr subGpuA;
  MatrixPtr subGpuB;
  subMatrix(subCpuA, cpuA, startM, endM, startK, endK);
  subMatrix(subGpuA, gpuA, startM, endM, startK, endK);
  subMatrix(subCpuB, cpuB, startK, endK, startN, endN);
  subMatrix(subGpuB, gpuB, startK, endK, startN, endN);
  MatrixPtr subCpuC = cpuC->subMatrix(startM, endM, startN, endN);
  MatrixPtr subGpuC = gpuC->subMatrix(startM, endM, startN, endN);

488 489
  subCpuC->mul(*subCpuA, *subCpuB, alpha, beta);
  subGpuC->mul(*subGpuA, *subGpuB, alpha, beta);
Z
zhangjinchao01 已提交
490

491
  TensorCheckErr(*cpuC, *gpuC);
Z
zhangjinchao01 已提交
492 493 494 495 496 497 498 499 500 501 502 503
}

TEST(Matrix, mul) {
  for (auto transa : {false, true}) {
    for (auto transb : {false, true}) {
      for (auto dimM : {1, 9, 53, 127, 345, 1023, 2135}) {
        for (auto dimN : {1, 5, 37, 256, 1024}) {
          for (auto dimK : {8, 45, 346, 784, 1025}) {
            if (true == transa && true == transb) {
              continue;
            }
            VLOG(3) << setiosflags(ios::left) << setfill(' ')
504 505 506
                    << " transa=" << transa << " transb=" << transb
                    << " dimM=" << setw(5) << dimM << " dimN=" << setw(5)
                    << dimN << " dimK=" << setw(5) << dimK;
Z
zhangjinchao01 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

            testMatrixMul(transa, transb, dimM, dimN, dimK);
            testSubMatrixMul(transa, transb, dimM, dimN, dimK);
          }
        }
      }
    }
  }
}

void testVectorRowFunc(int size) {
  CpuVectorPtr cpu = std::make_shared<CpuVectorT<real>>(size);
  GpuVectorPtr gpu = std::make_shared<GpuVectorT<real>>(size);

  cpu->rand();
  gpu->copyFrom(*cpu);

  EXPECT_EQ(cpu->getMax(), gpu->getMax());
  EXPECT_EQ(cpu->getMin(), gpu->getMin());
  EXPECT_EQ(cpu->getAbsMax(), gpu->getAbsMax());
}

TEST(Vector, rowFunc) {
  for (auto size : {1, 5, 31, 90, 150, 500, 1000, 4000}) {
    VLOG(3) << " size=" << size;
    testVectorRowFunc(size);
  }
}

536
template <class T>
Z
zhangjinchao01 已提交
537 538 539 540 541 542 543 544
void testVectorReset(int size) {
  std::shared_ptr<CpuVectorT<T>> cpu = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpu = std::make_shared<GpuVectorT<T>>(size);

  T value = (T)((int)rand() % 100 + 1.0f / ((int)rand() % 100));
  cpu->reset(value);
  gpu->reset(value);

545
  TensorCheckEqual(*cpu, *gpu);
Z
zhangjinchao01 已提交
546 547
}

548
template <class T>
Z
zhangjinchao01 已提交
549 550 551
void testVecortSelectFrom(int size) {
  std::shared_ptr<CpuVectorT<T>> cpuDst = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpuDst = std::make_shared<GpuVectorT<T>>(size);
552 553 554 555
  std::shared_ptr<CpuVectorT<T>> cpuSrc =
      std::make_shared<CpuVectorT<T>>(size * 2);
  std::shared_ptr<GpuVectorT<T>> gpuSrc =
      std::make_shared<GpuVectorT<T>>(size * 2);
Z
zhangjinchao01 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
  CpuIVectorPtr cpuIds = std::make_shared<CpuVectorT<int>>(size);
  GpuIVectorPtr gpuIds = std::make_shared<GpuVectorT<int>>(size);

  if (std::is_same<T, real>::value) {
    cpuSrc->rand();
  } else {
    cpuSrc->rand(100000);
  }
  gpuSrc->copyFrom(*cpuSrc);
  cpuIds->rand(size);
  gpuIds->copyFrom(*cpuIds);

  cpuDst->selectFrom(*cpuSrc, *cpuIds);
  gpuDst->selectFrom(*gpuSrc, *gpuIds);

571
  TensorCheckEqual(*cpuDst, *gpuDst);
Z
zhangjinchao01 已提交
572 573
}

574
template <class T>
Z
zhangjinchao01 已提交
575 576 577 578 579 580 581
void testVecotrZeroMem(int size) {
  std::shared_ptr<CpuVectorT<T>> cpu = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpu = std::make_shared<GpuVectorT<T>>(size);

  cpu->zeroMem();
  gpu->zeroMem();

582
  TensorCheckEqual(*cpu, *gpu);
Z
zhangjinchao01 已提交
583 584
}

585
template <class T>
Z
zhangjinchao01 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
void testVectorIsEqual(int size) {
  std::shared_ptr<CpuVectorT<T>> cpuA = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<CpuVectorT<T>> cpuB = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpuA = std::make_shared<GpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpuB = std::make_shared<GpuVectorT<T>>(size);

  if (std::is_same<T, real>::value) {
    cpuB->rand();
  } else {
    cpuB->rand(100000);
  }
  gpuB->copyFrom(*cpuB);

  T value = (T)((int)rand() % 100 + 1.0f / ((int)rand() % 100));
  cpuA->isEqualTo(*cpuB, value);
  gpuA->isEqualTo(*gpuB, value);

603
  TensorCheckEqual(*cpuA, *gpuA);
Z
zhangjinchao01 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
}

TEST(Vector, Equal) {
  for (auto size : {1, 5, 31, 90, 150, 500, 1000, 4000}) {
    VLOG(3) << " size=" << size;
    testVectorReset<int>(size);
    testVectorReset<real>(size);
    testVecortSelectFrom<int>(size);
    testVecortSelectFrom<real>(size);
    testVecotrZeroMem<int>(size);
    testVecotrZeroMem<real>(size);
    testVectorIsEqual<int>(size);
    testVectorIsEqual<real>(size);
  }
}

void testMatrixTopK(int samples, int dim, int beamSize) {
  MatrixPtr cpuSrc = std::make_shared<CpuMatrix>(samples, dim);
  MatrixPtr gpuSrc = std::make_shared<GpuMatrix>(samples, dim);
  MatrixPtr cpuVal = std::make_shared<CpuMatrix>(samples, beamSize);
  MatrixPtr gpuVal = std::make_shared<GpuMatrix>(samples, beamSize);
  IVectorPtr cpuIds = std::make_shared<CpuIVector>(samples * beamSize);
  IVectorPtr gpuIds = std::make_shared<GpuIVector>(samples * beamSize);

  cpuSrc->randomizeUniform();
  gpuSrc->copyFrom(*cpuSrc);

  cpuSrc->rowMax(*cpuIds, *cpuVal);
  gpuSrc->rowMax(*gpuIds, *gpuVal);

634
  TensorCheckEqual(*cpuVal, *gpuVal);
Z
zhangjinchao01 已提交
635 636 637 638
}

TEST(Matrix, topK) {
  for (auto samples : {1, 5, 31, 90, 150, 500}) {
639 640
    for (auto dim :
         {1, 5, 8, 10, 15, 64, 80, 120, 256, 300, 1280, 5120, 50000}) {
Z
zhangjinchao01 已提交
641 642
      for (auto beamSize : {1, 5, 10, 20, 40, (int)rand() % dim + 1}) {
        if (beamSize > dim) continue;
643
        VLOG(3) << " samples=" << samples << " beamSize=" << beamSize
Z
zhangjinchao01 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
                << " dim=" << dim;
        testMatrixTopK(samples, dim, beamSize);
      }
    }
  }
}

void testSMatrixTopK(int samples, int dim, int beamSize, real ratio) {
  int nnz = samples * dim * ratio;
  MatrixPtr cpuSrc = std::make_shared<CpuSparseMatrix>(samples, dim, nnz);
  MatrixPtr gpuSrc = std::make_shared<GpuSparseMatrix>(samples, dim, nnz);
  MatrixPtr cpuVal = std::make_shared<CpuMatrix>(samples, beamSize);
  MatrixPtr gpuVal = std::make_shared<GpuMatrix>(samples, beamSize);
  IVectorPtr cpuIds = std::make_shared<CpuIVector>(samples * beamSize);
  IVectorPtr gpuIds = std::make_shared<GpuIVector>(samples * beamSize);

  cpuSrc->randomizeUniform();
  gpuSrc->copyFrom(*cpuSrc);
  cpuVal->zero();
  cpuIds->zero();
  gpuVal->zero();
  gpuIds->zero();

  cpuSrc->rowMax(*cpuIds, *cpuVal);
  gpuSrc->rowMax(*gpuIds, *gpuVal);

670
  TensorCheckEqual(*cpuVal, *gpuVal);
Z
zhangjinchao01 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

  IVectorPtr outCheckIds = std::make_shared<CpuIVector>(samples * beamSize);
  outCheckIds->copyFrom(*gpuIds);

  const int* data1 = cpuIds->getData();
  const int* data2 = outCheckIds->getData();
  size_t size = cpuIds->getSize();
  for (size_t i = 0; i < size; i++) {
    if (data1[i] == -1 && data1[i] != data2[i]) {
      EXPECT_EQ(data1[i], data2[i]);
    }
  }
}

TEST(SMatrix, topK) {
  for (auto samples : {1, 5, 100}) {
    for (auto dim : {10000, 10000, 50000}) {
      for (auto beamSize : {1, 5, 40, 100, 500}) {
        for (auto ratio : {0.01, 0.001}) {
          if (beamSize > dim) continue;
691 692
          VLOG(3) << " samples=" << samples << " beamSize=" << beamSize
                  << " dim=" << dim << " ratio=" << ratio;
Z
zhangjinchao01 已提交
693 694 695 696 697 698 699
          testSMatrixTopK(samples, dim, beamSize, ratio);
        }
      }
    }
  }
}

L
Luo Tao 已提交
700
void testMatrixSequenceAvg(int batchSize, int inputDim, int mode) {
Z
zhangjinchao01 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  IVectorPtr cpuSequence;
  generateSequenceStartPositions(batchSize, cpuSequence);
  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
  gpuSequence->copyFrom(*cpuSequence);

  int newBatchSize = cpuSequence->getSize() - 1;
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(newBatchSize, inputDim);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(newBatchSize, inputDim);
  cpuOutput->zero();
  gpuOutput->zero();

  cpuOutput->sequenceAvgForward(*cpuInput, *cpuSequence, mode);
  gpuOutput->sequenceAvgForward(*gpuInput, *gpuSequence, mode);

720
  TensorCheckErr(*cpuOutput, *gpuOutput);
L
Luo Tao 已提交
721 722 723 724 725 726 727 728 729 730

  MatrixPtr cpuInGrad = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInGrad = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInGrad->randomizeUniform();
  gpuInGrad->copyFrom(*cpuInGrad);

  cpuInGrad->sequenceAvgBackward(*cpuOutput, *cpuSequence, mode);
  gpuInGrad->sequenceAvgBackward(*gpuOutput, *gpuSequence, mode);

  TensorCheckErr(*cpuInGrad, *gpuInGrad);
Z
zhangjinchao01 已提交
731 732
}

L
Luo Tao 已提交
733
TEST(Matrix, sequenceAvg) {
Z
zhangjinchao01 已提交
734 735 736 737 738
  for (auto batchSize : {10, 128, 6000}) {
    for (auto inputDim : {32, 100, 512}) {
      for (auto mode : {0, 1, 2}) {
        VLOG(3) << " batchSize=" << batchSize << " inputDim=" << inputDim
                << " mode=" << mode;
L
Luo Tao 已提交
739
        testMatrixSequenceAvg(batchSize, inputDim, mode);
Z
zhangjinchao01 已提交
740 741 742 743 744
      }
    }
  }
}

745 746 747 748
void testParamReluBackwardDiff(int height,
                               int width,
                               int w_height,
                               int w_width) {
Z
zhangjinchao01 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
  MatrixPtr oGrad = CpuMatrix::create(height, width, false, false);
  MatrixPtr input = CpuMatrix::create(height, width, false, false);
  MatrixPtr diff = CpuMatrix::create(height, width, false, false);
  MatrixPtr w = CpuMatrix::create(w_height, w_width, false, false);

  oGrad->randomizeUniform();
  input->randomizeUniform();
  w->randomizeUniform();
  diff->randomizeUniform();
  input->add(-0.5);

  MatrixPtr oGradGpu = GpuMatrix::create(height, width, false, true);
  MatrixPtr inputGpu = GpuMatrix::create(height, width, false, true);
  MatrixPtr diffGpu = CpuMatrix::create(height, width, false, true);
  MatrixPtr wGpu = GpuMatrix::create(w_height, w_width, false, true);

  oGradGpu->copyFrom(*oGrad);
  inputGpu->copyFrom(*input);
  wGpu->copyFrom(*w);
  diffGpu->copyFrom(*diff);

  diff->paramReluBackwardDiff(*oGrad, *input, *w);
  diffGpu->paramReluBackwardDiff(*oGradGpu, *inputGpu, *wGpu);

773
  TensorCheckErr(*diff, *diffGpu);
Z
zhangjinchao01 已提交
774 775 776
}

TEST(Matrix, paramReluBackwardDiff) {
H
hedaoyuan 已提交
777 778
  for (auto height : {10, 40, 100}) {
    for (auto width : {10, 40, 100}) {
Z
zhangjinchao01 已提交
779 780
      for (auto w_height : {1, 2}) {
        for (auto w_width : {1, 2}) {
H
hedaoyuan 已提交
781
          if (width % (w_height * w_width)) continue;
Z
zhangjinchao01 已提交
782 783 784 785 786 787 788
          testParamReluBackwardDiff(height, width, w_height, w_width);
        }
      }
    }
  }
}

789
void testClassificationError(int numSamples, int dim, int topkSize) {
H
He 已提交
790 791 792 793 794 795 796 797 798 799 800 801
  MatrixPtr cpuError = std::make_shared<CpuMatrix>(numSamples, 1);
  MatrixPtr gpuError = std::make_shared<GpuMatrix>(numSamples, 1);
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(numSamples, dim);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(numSamples, dim);
  IVectorPtr cpuLabel = std::make_shared<CpuIVector>(numSamples);
  IVectorPtr gpuLabel = std::make_shared<GpuIVector>(numSamples);

  cpuOutput->randomizeUniform();
  cpuLabel->rand(dim);
  gpuOutput->copyFrom(*cpuOutput);
  gpuLabel->copyFrom(*cpuLabel);

802 803
  cpuError->classificationError(*cpuOutput, *cpuLabel, topkSize);
  gpuError->classificationError(*gpuOutput, *gpuLabel, topkSize);
H
He 已提交
804

805
  TensorCheckEqual(*cpuError, *gpuError);
H
He 已提交
806 807 808
}

TEST(Matrix, classificationError) {
809 810 811 812 813 814 815 816 817
  for (auto numSamples : {1, 5, 31, 90, 150, 300}) {
    for (auto dim :
         {1, 5, 8, 10, 15, 64, 80, 120, 256, 300, 1280, 5120, 50000}) {
      for (auto topkSize : {1, 5, 10, 20, 40, (int)rand() % dim + 1}) {
        if (topkSize > dim) continue;
        VLOG(3) << " sample= " << numSamples << " topkSize= " << topkSize
                << " dim= " << dim;
        testClassificationError(numSamples, dim, topkSize);
      }
H
He 已提交
818 819 820 821
    }
  }
}

822 823 824 825 826 827 828 829 830 831
void testMaxPoolFwdBwd(int numSamples,
                       int channels,
                       int imgSizeH,
                       int imgSizeW,
                       int ksizeH,
                       int ksizeW,
                       int strideH,
                       int strideW,
                       int padH,
                       int padW) {
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
  int outH = 0, outW = 0;
  outH = (imgSizeH - ksizeH + 2 * padH + strideH - 1) / strideH + 1;
  outW = (imgSizeW - ksizeW + 2 * padW + strideW - 1) / strideW + 1;

  int inWidth = imgSizeH * imgSizeW * channels;
  MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);

  int outWidth = channels * outH * outW;
  MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
  MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);

  input->randomizeUniform();
  target->randomizeUniform();
  inputGpu->copyFrom(*input);
  targetGpu->copyFrom(*target);

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
  target->maxPoolForward(*input,
                         imgSizeH,
                         imgSizeW,
                         channels,
                         ksizeW,
                         ksizeH,
                         strideH,
                         strideW,
                         outH,
                         outW,
                         padH,
                         padW);
  targetGpu->maxPoolForward(*inputGpu,
                            imgSizeH,
                            imgSizeW,
                            channels,
                            ksizeW,
                            ksizeH,
                            strideH,
                            strideW,
                            outH,
                            outW,
                            padH,
                            padW);
873 874 875 876 877 878 879
  MatrixPtr targetCheck = CpuMatrix::create(numSamples, outWidth, false, false);
  targetCheck->copyFrom(*targetGpu);
  checkMatrixEqual(target, targetCheck);

  MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);
  MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
880 881
  MatrixPtr targetGpuGrad =
      GpuMatrix::create(numSamples, outWidth, false, true);
882 883 884 885 886 887

  inputGrad->randomizeUniform();
  targetGrad->randomizeUniform();
  inputGpuGrad->copyFrom(*inputGrad);
  targetGpuGrad->copyFrom(*targetGrad);

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
  inputGrad->maxPoolBackward(*input,
                             imgSizeH,
                             imgSizeW,
                             *targetGrad,
                             *target,
                             ksizeW,
                             ksizeH,
                             strideH,
                             strideW,
                             outH,
                             outW,
                             1.0,
                             1.0,
                             padH,
                             padW);
  inputGpuGrad->maxPoolBackward(*inputGpu,
                                imgSizeH,
                                imgSizeW,
                                *targetGpuGrad,
                                *targetGpu,
                                ksizeW,
                                ksizeH,
                                strideH,
                                strideW,
                                outH,
                                outW,
                                1.0,
                                1.0,
                                padH,
                                padW);
  MatrixPtr targetBwdCheck =
      CpuMatrix::create(numSamples, inWidth, false, false);
920 921 922 923
  targetBwdCheck->copyFrom(*inputGpuGrad);
  checkMatrixEqual(inputGrad, targetBwdCheck);
}

924 925 926 927 928 929 930 931 932 933
void testAvgPoolFwdBwd(int numSamples,
                       int channels,
                       int imgSizeH,
                       int imgSizeW,
                       int ksizeH,
                       int ksizeW,
                       int strideH,
                       int strideW,
                       int padH,
                       int padW) {
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
  int outH = 0, outW = 0;
  outH = (imgSizeH - ksizeH + 2 * padH + strideH - 1) / strideH + 1;
  outW = (imgSizeW - ksizeW + 2 * padW + strideW - 1) / strideW + 1;

  int inWidth = imgSizeH * imgSizeW * channels;
  MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);

  int outWidth = channels * outH * outW;
  MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
  MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);

  input->randomizeUniform();
  target->randomizeUniform();
  inputGpu->copyFrom(*input);
  targetGpu->copyFrom(*target);

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
  target->avgPoolForward(*input,
                         imgSizeH,
                         imgSizeW,
                         channels,
                         ksizeW,
                         ksizeH,
                         strideH,
                         strideW,
                         outH,
                         outW,
                         padH,
                         padW);
  targetGpu->avgPoolForward(*inputGpu,
                            imgSizeH,
                            imgSizeW,
                            channels,
                            ksizeW,
                            ksizeH,
                            strideH,
                            strideW,
                            outH,
                            outW,
                            padH,
                            padW);
975 976

  TensorCheckErr(*target, *targetGpu);
977 978 979 980

  MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);
  MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
981 982
  MatrixPtr targetGpuGrad =
      GpuMatrix::create(numSamples, outWidth, false, true);
983 984 985 986 987 988

  inputGrad->randomizeUniform();
  targetGrad->randomizeUniform();
  inputGpuGrad->copyFrom(*inputGrad);
  targetGpuGrad->copyFrom(*targetGrad);

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
  inputGrad->avgPoolBackward(*targetGrad,
                             imgSizeH,
                             imgSizeW,
                             ksizeW,
                             ksizeH,
                             strideH,
                             strideW,
                             outH,
                             outW,
                             1.0,
                             1.0,
                             padH,
                             padW);
  inputGpuGrad->avgPoolBackward(*targetGpuGrad,
                                imgSizeH,
                                imgSizeW,
                                ksizeW,
                                ksizeH,
                                strideH,
                                strideW,
                                outH,
                                outW,
                                1.0,
                                1.0,
                                padH,
                                padW);
1015 1016

  TensorCheckErr(*inputGrad, *inputGpuGrad);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
}

TEST(Matrix, PoolFwdBwd) {
  for (auto numSamples : {5, 32}) {
    for (auto channels : {1, 9, 32}) {
      for (auto imgSizeH : {14, 28}) {
        for (auto imgSizeW : {16, 30}) {
          for (auto sizeX : {2, 5}) {
            for (auto sizeY : {2, 5}) {
              for (auto sH : {1, 2}) {
                for (auto sW : {1, 2}) {
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
                  for (auto pH : {0, (sizeY - 1) / 2}) {
                    for (auto pW : {0, (sizeX - 1) / 2}) {
                      VLOG(3) << " numSamples=" << numSamples
                              << " channels=" << channels
                              << " imgSizeH=" << imgSizeH
                              << " imgSizeW=" << imgSizeW << " sizeX=" << sizeX
                              << " sizeY=" << sizeY << " strideH=" << sH
                              << " strideW=" << sW << " padingH=" << pH
                              << " padingW=" << pW;
                      testMaxPoolFwdBwd(numSamples,
                                        channels,
                                        imgSizeH,
                                        imgSizeW,
                                        sizeX,
                                        sizeY,
                                        sH,
                                        sW,
                                        pH,
                                        pW);
                      testAvgPoolFwdBwd(numSamples,
                                        channels,
                                        imgSizeH,
                                        imgSizeW,
                                        sizeX,
                                        sizeY,
                                        sH,
                                        sW,
                                        pH,
                                        pW);
                    }
                  }
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
                }
              }
            }
          }
        }
      }
    }
  }
}

1069 1070
void testMaxOutFwdBwd(
    int numSamples, int imgSizeH, int imgSizeW, int channels, int groups) {
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
  int inWidth = imgSizeH * imgSizeW * channels;
  int outChannels = channels / groups;
  int outWidth = imgSizeH * imgSizeW * outChannels;

  // forward
  MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);

  MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
  MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);

  IVectorPtr id = CpuIVector::create(numSamples * outWidth, false);
  IVectorPtr idGpu = GpuIVector::create(numSamples * outWidth, true);

  input->randomizeUniform();
  inputGpu->copyFrom(*input);

  target->maxoutForward(*input, *id, outChannels, groups);
  targetGpu->maxoutForward(*inputGpu, *idGpu, outChannels, groups);

1091 1092
  TensorCheckErr(*target, *targetGpu);
  TensorCheckEqual(*id, *idGpu);
1093 1094 1095 1096 1097 1098

  // backward
  MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);

  MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
1099 1100
  MatrixPtr targetGpuGrad =
      GpuMatrix::create(numSamples, outWidth, false, true);
1101 1102 1103 1104 1105 1106 1107 1108 1109

  inputGrad->randomizeUniform();
  targetGrad->randomizeUniform();
  inputGpuGrad->copyFrom(*inputGrad);
  targetGpuGrad->copyFrom(*targetGrad);

  inputGrad->maxoutBackward(*targetGrad, *id, outChannels, groups);
  inputGpuGrad->maxoutBackward(*targetGpuGrad, *idGpu, outChannels, groups);

1110
  TensorCheckErr(*inputGrad, *inputGpuGrad);
1111 1112 1113 1114 1115 1116 1117 1118
}

TEST(Matrix, MaxOutFwdBwd) {
  for (auto numSamples : {5, 10}) {
    for (auto channels : {8, 16}) {
      for (auto imgSizeH : {14, 28}) {
        for (auto imgSizeW : {16, 30}) {
          for (auto groups : {2, 4}) {
1119 1120
            VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
                    << " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW
1121 1122 1123 1124 1125 1126 1127 1128 1129
                    << " groups=" << groups;
            testMaxOutFwdBwd(numSamples, imgSizeH, imgSizeW, channels, groups);
          }
        }
      }
    }
  }
}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
TEST(CpuMatrix, copyFrom) {
  const size_t height = 1000;
  const size_t width = 1000;
  CpuMatrix cpu(height, width);
  GpuMatrix gpu(height, width);
  CpuMatrix copy(height, width);

  cpu.randomizeUniform();
  gpu.copyFrom(cpu);
  copy.copyFrom(gpu, HPPL_STREAM_DEFAULT);

  TensorCheckEqual(cpu, copy);
}

D
dangqingqing 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
void testBatch2seqPadding(int batchSize, int inputDim) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  IVectorPtr cpuSequence;
  generateSequenceStartPositions(batchSize, cpuSequence);
  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
  gpuSequence->copyFrom(*cpuSequence);

  size_t numSeq = cpuSequence->getSize() - 1;
D
dangqingqing 已提交
1156 1157
  size_t maxSeqLen = *std::max_element(cpuSequence->getData(),
                                       cpuSequence->getData() + numSeq);
D
dangqingqing 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

  MatrixPtr cBatch = std::make_shared<CpuMatrix>(numSeq * maxSeqLen, inputDim);
  MatrixPtr gBatch = std::make_shared<GpuMatrix>(numSeq * maxSeqLen, inputDim);
  MatrixPtr cCheck = std::make_shared<CpuMatrix>(numSeq * maxSeqLen, inputDim);

  hl_sequence2batch_copy_padding(gBatch->getData(),
                                 gpuInput->getData(),
                                 cpuSequence->getData(),
                                 inputDim,
                                 maxSeqLen,
                                 numSeq,
                                 false,
                                 true);
  cCheck->copyFrom(*gBatch);

  int* seqStart = cpuSequence->getData();
  float* batchData = cBatch->getData();
  float* seqData = cpuInput->getData();
  for (size_t i = 0; i < maxSeqLen; i++) {
    for (size_t j = 0; j < numSeq; j++) {
      size_t sequenceStart = seqStart[j];
      size_t sequenceLength = seqStart[j + 1] - seqStart[j];
      if (i < sequenceLength) {
        memcpy(batchData + (i * numSeq + j) * inputDim,
               seqData + (sequenceStart + i) * inputDim,
               inputDim * sizeof(real));
      } else {
        memset(batchData + (i * numSeq + j) * inputDim,
               0,
               inputDim * sizeof(real));
      }
    }
  }

  TensorCheckErr(*cBatch, *cCheck);
}

TEST(Matrix, warpCTC) {
D
dangqingqing 已提交
1196 1197
  for (auto batchSize : {51, 526, 2884}) {
    for (auto inputDim : {32, 512, 2026}) {
D
dangqingqing 已提交
1198 1199
      VLOG(3) << " batchSize=" << batchSize << " inputDim=" << inputDim;
      testBatch2seqPadding(batchSize, inputDim);
D
dangqingqing 已提交
1200 1201 1202 1203
    }
  }
}

Z
zhangjinchao01 已提交
1204
#endif