vehicle_plate.py 21.5 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
from functools import reduce

import time
import cv2
import numpy as np
import math
import paddle

import sys
Z
zhiboniu 已提交
27
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
Z
zhiboniu 已提交
28 29
sys.path.insert(0, parent_path)

Z
zhiboniu 已提交
30
from python.infer import get_test_images
Z
zhiboniu 已提交
31
from python.preprocess import preprocess, NormalizeImage, Permute, Resize_Mult32
Z
zhiboniu 已提交
32 33 34
from pphuman.ppvehicle.vehicle_plateutils import create_predictor, get_infer_gpuid, get_rotate_crop_image, draw_boxes
from pphuman.ppvehicle.vehicleplate_postprocess import build_post_process
from pphuman.pipe_utils import merge_cfg, print_arguments, argsparser
Z
zhiboniu 已提交
35 36 37


class PlateDetector(object):
Z
zhiboniu 已提交
38
    def __init__(self, args, cfg):
Z
zhiboniu 已提交
39 40 41
        self.args = args
        self.pre_process_list = {
            'Resize_Mult32': {
Z
zhiboniu 已提交
42 43
                'limit_side_len': cfg['det_limit_side_len'],
                'limit_type': cfg['det_limit_type'],
Z
zhiboniu 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
            },
            'NormalizeImage': {
                'mean': [0.485, 0.456, 0.406],
                'std': [0.229, 0.224, 0.225],
                'is_scale': True,
            },
            'Permute': {}
        }
        postprocess_params = {}
        postprocess_params['name'] = 'DBPostProcess'
        postprocess_params["thresh"] = 0.3
        postprocess_params["box_thresh"] = 0.6
        postprocess_params["max_candidates"] = 1000
        postprocess_params["unclip_ratio"] = 1.5
        postprocess_params["use_dilation"] = False
        postprocess_params["score_mode"] = "fast"

        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors, self.config = create_predictor(
Z
zhiboniu 已提交
63
            args, cfg, 'det')
Z
zhiboniu 已提交
64 65 66 67 68 69 70 71 72 73 74

    def preprocess(self, image_list):
        preprocess_ops = []
        for op_type, new_op_info in self.pre_process_list.items():
            preprocess_ops.append(eval(op_type)(**new_op_info))

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
            im, im_info = preprocess(im_path, preprocess_ops)
            input_im_lst.append(im)
Z
zhiboniu 已提交
75 76
            input_im_info_lst.append(im_info['im_shape'] /
                                     im_info['scale_factor'])
Z
zhiboniu 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

        return np.stack(input_im_lst, axis=0), input_im_info_lst

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        diff = np.diff(pts, axis=1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
        return rect

    def clip_det_res(self, points, img_height, img_width):
        for pno in range(points.shape[0]):
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
            box = self.clip_det_res(box, img_height, img_width)
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
            if rect_width <= 3 or rect_height <= 3:
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

Z
zhiboniu 已提交
119
    def predict_image(self, img_list):
Z
zhiboniu 已提交
120 121
        st = time.time()

Z
zhiboniu 已提交
122
        img, shape_list = self.preprocess(img_list)
Z
zhiboniu 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        if img is None:
            return None, 0

        self.input_tensor.copy_from_cpu(img)
        self.predictor.run()
        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)

        preds = {}
        preds['maps'] = outputs[0]

        #self.predictor.try_shrink_memory()
        post_result = self.postprocess_op(preds, shape_list)
Z
zhiboniu 已提交
138 139 140 141 142 143 144

        dt_batch_boxes = []
        for idx in range(len(post_result)):
            org_shape = img_list[idx].shape
            dt_boxes = post_result[idx]['points']
            dt_boxes = self.filter_tag_det_res(dt_boxes, org_shape)
            dt_batch_boxes.append(dt_boxes)
Z
zhiboniu 已提交
145 146

        et = time.time()
Z
zhiboniu 已提交
147
        return dt_batch_boxes, et - st
Z
zhiboniu 已提交
148 149 150


class TextRecognizer(object):
Z
zhiboniu 已提交
151 152 153 154 155
    def __init__(self, args, cfg, use_gpu=True):
        self.rec_image_shape = cfg['rec_image_shape']
        self.rec_batch_num = cfg['rec_batch_num']
        self.rec_algorithm = cfg['rec_algorithm']
        word_dict_path = cfg['word_dict_path']
Z
zhiboniu 已提交
156
        use_space_char = True
Z
zhiboniu 已提交
157 158 159 160

        postprocess_params = {
            'name': 'CTCLabelDecode',
            "character_dict_path": word_dict_path,
Z
zhiboniu 已提交
161
            "use_space_char": use_space_char
Z
zhiboniu 已提交
162 163 164 165 166
        }
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
                "character_dict_path": word_dict_path,
Z
zhiboniu 已提交
167
                "use_space_char": use_space_char
Z
zhiboniu 已提交
168 169 170 171 172
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
                "character_dict_path": word_dict_path,
Z
zhiboniu 已提交
173
                "use_space_char": use_space_char
Z
zhiboniu 已提交
174 175 176 177 178
            }
        elif self.rec_algorithm == 'NRTR':
            postprocess_params = {
                'name': 'NRTRLabelDecode',
                "character_dict_path": word_dict_path,
Z
zhiboniu 已提交
179
                "use_space_char": use_space_char
Z
zhiboniu 已提交
180 181 182 183 184
            }
        elif self.rec_algorithm == "SAR":
            postprocess_params = {
                'name': 'SARLabelDecode',
                "character_dict_path": word_dict_path,
Z
zhiboniu 已提交
185
                "use_space_char": use_space_char
Z
zhiboniu 已提交
186 187 188
            }
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
Z
zhiboniu 已提交
189
            create_predictor(args, cfg, 'rec')
Z
zhiboniu 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
        self.use_onnx = False

    def resize_norm_img(self, img, max_wh_ratio):
        imgC, imgH, imgW = self.rec_image_shape
        if self.rec_algorithm == 'NRTR':
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            # return padding_im
            image_pil = Image.fromarray(np.uint8(img))
            img = image_pil.resize([100, 32], Image.ANTIALIAS)
            img = np.array(img)
            norm_img = np.expand_dims(img, -1)
            norm_img = norm_img.transpose((2, 0, 1))
            return norm_img.astype(np.float32) / 128. - 1.

        assert imgC == img.shape[2]
        imgW = int((imgH * max_wh_ratio))
        if self.use_onnx:
            w = self.input_tensor.shape[3:][0]
            if w is not None and w > 0:
                imgW = w

        h, w = img.shape[:2]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        if self.rec_algorithm == 'RARE':
            if resized_w > self.rec_image_shape[2]:
                resized_w = self.rec_image_shape[2]
            imgW = self.rec_image_shape[2]
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def resize_norm_img_svtr(self, img, image_shape):

        imgC, imgH, imgW = image_shape
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        return resized_image

    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

    def resize_norm_img_sar(self, img, image_shape,
                            width_downsample_ratio=0.25):
        imgC, imgH, imgW_min, imgW_max = image_shape
        h = img.shape[0]
        w = img.shape[1]
        valid_ratio = 1.0
        # make sure new_width is an integral multiple of width_divisor.
        width_divisor = int(1 / width_downsample_ratio)
        # resize
        ratio = w / float(h)
        resize_w = math.ceil(imgH * ratio)
        if resize_w % width_divisor != 0:
            resize_w = round(resize_w / width_divisor) * width_divisor
        if imgW_min is not None:
            resize_w = max(imgW_min, resize_w)
        if imgW_max is not None:
            valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
            resize_w = min(imgW_max, resize_w)
        resized_image = cv2.resize(img, (resize_w, imgH))
        resized_image = resized_image.astype('float32')
        # norm 
        if image_shape[0] == 1:
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
        else:
            resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        resize_shape = resized_image.shape
        padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
        padding_im[:, :, 0:resize_w] = resized_image
        pad_shape = padding_im.shape

        return padding_im, resize_shape, pad_shape, valid_ratio

Z
zhiboniu 已提交
348
    def predict_text(self, img_list):
Z
zhiboniu 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
        img_num = len(img_list)
        # Calculate the aspect ratio of all text bars
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
        # Sorting can speed up the recognition process
        indices = np.argsort(np.array(width_list))
        rec_res = [['', 0.0]] * img_num
        batch_num = self.rec_batch_num
        st = time.time()
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
            imgC, imgH, imgW = self.rec_image_shape
            max_wh_ratio = imgW / imgH
            # max_wh_ratio = 0
            for ino in range(beg_img_no, end_img_no):
                h, w = img_list[indices[ino]].shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):

                if self.rec_algorithm == "SAR":
                    norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
                        img_list[indices[ino]], self.rec_image_shape)
                    norm_img = norm_img[np.newaxis, :]
                    valid_ratio = np.expand_dims(valid_ratio, axis=0)
                    valid_ratios = []
                    valid_ratios.append(valid_ratio)
                    norm_img_batch.append(norm_img)
                elif self.rec_algorithm == "SRN":
                    norm_img = self.process_image_srn(
                        img_list[indices[ino]], self.rec_image_shape, 8, 25)
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
                elif self.rec_algorithm == "SVTR":
                    norm_img = self.resize_norm_img_svtr(img_list[indices[ino]],
                                                         self.rec_image_shape)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
                else:
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()

            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = {"predict": outputs[2]}
                else:
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    preds = {"predict": outputs[2]}
            elif self.rec_algorithm == "SAR":
                valid_ratios = np.concatenate(valid_ratios)
                inputs = [
                    norm_img_batch,
                    valid_ratios,
                ]
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
                else:
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    preds = outputs[0]
            else:
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
                else:
                    self.input_tensor.copy_from_cpu(norm_img_batch)
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if len(outputs) != 1:
                        preds = outputs
                    else:
                        preds = outputs[0]
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
        return rec_res, time.time() - st


class PlateRecognizer(object):
Z
zhiboniu 已提交
486 487 488 489
    def __init__(self, args, cfg):
        use_gpu = args.device.lower() == "gpu"
        self.platedetector = PlateDetector(args, cfg)
        self.textrecognizer = TextRecognizer(args, cfg, use_gpu=use_gpu)
Z
zhiboniu 已提交
490 491 492 493 494

    def get_platelicense(self, image_list):
        plate_text_list = []
        plateboxes, det_time = self.platedetector.predict_image(image_list)
        for idx, boxes_pcar in enumerate(plateboxes):
Z
zhiboniu 已提交
495
            plate_pcar_list = []
Z
zhiboniu 已提交
496 497 498
            for box in boxes_pcar:
                plate_images = get_rotate_crop_image(image_list[idx], box)
                plate_texts = self.textrecognizer.predict_text([plate_images])
Z
zhiboniu 已提交
499 500
                plate_pcar_list.append(plate_texts)
            plate_text_list.append(plate_pcar_list)
Z
zhiboniu 已提交
501 502 503 504 505 506 507 508
        return self.check_plate(plate_text_list)

    def check_plate(self, text_list):
        simcode = [
            '浙', '粤', '京', '津', '冀', '晋', '蒙', '辽', '黑', '沪', '吉', '苏', '皖',
            '赣', '鲁', '豫', '鄂', '湘', '桂', '琼', '渝', '川', '贵', '云', '藏', '陕',
            '甘', '青', '宁'
        ]
Z
zhiboniu 已提交
509 510
        plate_all = {"plate": []}
        for text_pcar in text_list:
Z
zhiboniu 已提交
511
            platelicense = ""
Z
zhiboniu 已提交
512 513 514 515 516 517
            for text_info in text_pcar:
                text = text_info[0][0][0]
                if len(text) > 2 and text[0] in simcode and len(text) < 10:
                    platelicense = text
            plate_all["plate"].append(platelicense)
        return plate_all
Z
zhiboniu 已提交
518 519 520


def main():
Z
zhiboniu 已提交
521 522 523 524
    cfg = merge_cfg(FLAGS)
    print_arguments(cfg)
    vehicleplate_cfg = cfg['VEHICLE_PLATE']
    detector = PlateRecognizer(FLAGS, vehicleplate_cfg)
Z
zhiboniu 已提交
525 526 527 528 529
    # predict from image
    img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
    for img in img_list:
        image = cv2.imread(img)
        results = detector.get_platelicense([image])
Z
zhiboniu 已提交
530
        print(results)
Z
zhiboniu 已提交
531 532 533 534 535 536 537 538 539 540 541


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()