object_detector.cc 14.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
// for setprecision
#include <iomanip>
Z
zlsh80826 已提交
17
#include <chrono>
Q
qingqing01 已提交
18 19 20 21 22 23 24 25 26
#include "include/object_detector.h"

using namespace paddle_infer;

namespace PaddleDetection {

// Load Model and create model predictor
void ObjectDetector::LoadModel(const std::string& model_dir,
                               const int batch_size,
G
Guanghua Yu 已提交
27
                               const std::string& run_mode) {
Q
qingqing01 已提交
28 29 30 31
  paddle_infer::Config config;
  std::string prog_file = model_dir + OS_PATH_SEP + "model.pdmodel";
  std::string params_file = model_dir + OS_PATH_SEP + "model.pdiparams";
  config.SetModel(prog_file, params_file);
G
Guanghua Yu 已提交
32
  if (this->device_ == "GPU") {
G
Guanghua Yu 已提交
33
    config.EnableUseGpu(200, this->gpu_id_);
Q
qingqing01 已提交
34
    config.SwitchIrOptim(true);
35
    // use tensorrt
Q
qingqing01 已提交
36 37
    if (run_mode != "fluid") {
      auto precision = paddle_infer::Config::Precision::kFloat32;
38 39 40 41
      if (run_mode == "trt_fp32") {
        precision = paddle_infer::Config::Precision::kFloat32;
      }
      else if (run_mode == "trt_fp16") {
Q
qingqing01 已提交
42
        precision = paddle_infer::Config::Precision::kHalf;
43 44 45
      }
      else if (run_mode == "trt_int8") {
        precision = paddle_infer::Config::Precision::kInt8;
Q
qingqing01 已提交
46
      } else {
47
          printf("run_mode should be 'fluid', 'trt_fp32', 'trt_fp16' or 'trt_int8'");
Q
qingqing01 已提交
48
      }
49
      // set tensorrt
Q
qingqing01 已提交
50
      config.EnableTensorRtEngine(
51
          1 << 30,
Q
qingqing01 已提交
52
          batch_size,
G
Guanghua Yu 已提交
53
          this->min_subgraph_size_,
Q
qingqing01 已提交
54 55
          precision,
          false,
G
Guanghua Yu 已提交
56
          this->trt_calib_mode_);
57 58

      // set use dynamic shape
G
Guanghua Yu 已提交
59
      if (this->use_dynamic_shape_) {
60
        // set DynamicShsape for image tensor
G
Guanghua Yu 已提交
61 62 63
        const std::vector<int> min_input_shape = {1, 3, this->trt_min_shape_, this->trt_min_shape_};
        const std::vector<int> max_input_shape = {1, 3, this->trt_max_shape_, this->trt_max_shape_};
        const std::vector<int> opt_input_shape = {1, 3, this->trt_opt_shape_, this->trt_opt_shape_};
64 65 66 67 68 69 70 71 72 73 74
        const std::map<std::string, std::vector<int>> map_min_input_shape = {{"image", min_input_shape}};
        const std::map<std::string, std::vector<int>> map_max_input_shape = {{"image", max_input_shape}};
        const std::map<std::string, std::vector<int>> map_opt_input_shape = {{"image", opt_input_shape}};

        config.SetTRTDynamicShapeInfo(map_min_input_shape,
                                      map_max_input_shape,
                                      map_opt_input_shape);
        std::cout << "TensorRT dynamic shape enabled" << std::endl;
      }
    }

G
Guanghua Yu 已提交
75 76
  } else if (this->device_ == "XPU"){
    config.EnableXpu(10*1024*1024);
Q
qingqing01 已提交
77 78
  } else {
    config.DisableGpu();
G
Guanghua Yu 已提交
79 80 81 82 83 84
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
    }
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
Q
qingqing01 已提交
85 86
  }
  config.SwitchUseFeedFetchOps(false);
G
Guanghua Yu 已提交
87
  config.SwitchIrOptim(true);
Q
qingqing01 已提交
88 89 90 91 92 93 94 95
  config.DisableGlogInfo();
  // Memory optimization
  config.EnableMemoryOptim();
  predictor_ = std::move(CreatePredictor(config));
}

// Visualiztion MaskDetector results
cv::Mat VisualizeResult(const cv::Mat& img,
96
                        const std::vector<PaddleDetection::ObjectResult>& results,
C
cnn 已提交
97
                        const std::vector<std::string>& lables,
C
cnn 已提交
98 99
                        const std::vector<int>& colormap,
                        const bool is_rbox=false) {
Q
qingqing01 已提交
100 101 102 103 104
  cv::Mat vis_img = img.clone();
  for (int i = 0; i < results.size(); ++i) {
    // Configure color and text size
    std::ostringstream oss;
    oss << std::setiosflags(std::ios::fixed) << std::setprecision(4);
C
cnn 已提交
105
    oss << lables[results[i].class_id] << " ";
Q
qingqing01 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    oss << results[i].confidence;
    std::string text = oss.str();
    int c1 = colormap[3 * results[i].class_id + 0];
    int c2 = colormap[3 * results[i].class_id + 1];
    int c3 = colormap[3 * results[i].class_id + 2];
    cv::Scalar roi_color = cv::Scalar(c1, c2, c3);
    int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
    double font_scale = 0.5f;
    float thickness = 0.5;
    cv::Size text_size = cv::getTextSize(text,
                                         font_face,
                                         font_scale,
                                         thickness,
                                         nullptr);
    cv::Point origin;
C
cnn 已提交
121 122 123 124

    if (is_rbox)
    {
        // Draw object, text, and background
C
cnn 已提交
125
        for (int k = 0; k < 4; k++)
C
cnn 已提交
126
        {
C
cnn 已提交
127 128 129 130
            cv::Point pt1 = cv::Point(results[i].rect[(k * 2) % 8],
                                      results[i].rect[(k * 2 + 1) % 8]);
            cv::Point pt2 = cv::Point(results[i].rect[(k * 2 + 2) % 8],
                                      results[i].rect[(k * 2 + 3) % 8]);
C
cnn 已提交
131 132 133 134 135
            cv::line(vis_img, pt1, pt2, roi_color, 2);
        }
    }
    else
    {
C
cnn 已提交
136 137 138
        int w = results[i].rect[2] - results[i].rect[0];
        int h = results[i].rect[3] - results[i].rect[1];
        cv::Rect roi = cv::Rect(results[i].rect[0], results[i].rect[1], w, h);
C
cnn 已提交
139 140 141 142 143 144
        // Draw roi object, text, and background
        cv::rectangle(vis_img, roi, roi_color, 2);
    }

    origin.x = results[i].rect[0];
    origin.y = results[i].rect[1];
Q
qingqing01 已提交
145 146 147

    // Configure text background
    cv::Rect text_back = cv::Rect(results[i].rect[0],
C
cnn 已提交
148
                                  results[i].rect[1] - text_size.height,
Q
qingqing01 已提交
149 150
                                  text_size.width,
                                  text_size.height);
C
cnn 已提交
151
    // Draw text, and background
Q
qingqing01 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    cv::rectangle(vis_img, text_back, roi_color, -1);
    cv::putText(vis_img,
                text,
                origin,
                font_face,
                font_scale,
                cv::Scalar(255, 255, 255),
                thickness);
  }
  return vis_img;
}

void ObjectDetector::Preprocess(const cv::Mat& ori_im) {
  // Clone the image : keep the original mat for postprocess
  cv::Mat im = ori_im.clone();
  cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
  preprocessor_.Run(&im, &inputs_);
}

void ObjectDetector::Postprocess(
C
cnn 已提交
172
    const std::vector<cv::Mat> mats,
173
    std::vector<PaddleDetection::ObjectResult>* result,
C
cnn 已提交
174
    std::vector<int> bbox_num,
175
    std::vector<float> output_data_,
C
cnn 已提交
176
    bool is_rbox=false) {
Q
qingqing01 已提交
177
  result->clear();
C
cnn 已提交
178
  int start_idx = 0;
179
  for (int im_id = 0; im_id < mats.size(); im_id++) {
C
cnn 已提交
180
    cv::Mat raw_mat = mats[im_id];
181 182 183 184 185 186
    int rh = 1;
    int rw = 1;
    if (config_.arch_ == "Face") {
      rh = raw_mat.rows;
      rw = raw_mat.cols;
    }
C
cnn 已提交
187 188
    for (int j = start_idx; j < start_idx+bbox_num[im_id]; j++) {
      if (is_rbox) {
189 190 191 192 193 194 195 196 197 198 199 200 201
        // Class id
        int class_id = static_cast<int>(round(output_data_[0 + j * 10]));
        // Confidence score
        float score = output_data_[1 + j * 10];
        int x1 = (output_data_[2 + j * 10] * rw);
        int y1 = (output_data_[3 + j * 10] * rh);
        int x2 = (output_data_[4 + j * 10] * rw);
        int y2 = (output_data_[5 + j * 10] * rh);
        int x3 = (output_data_[6 + j * 10] * rw);
        int y3 = (output_data_[7 + j * 10] * rh);
        int x4 = (output_data_[8 + j * 10] * rw);
        int y4 = (output_data_[9 + j * 10] * rh);
          
202
        PaddleDetection::ObjectResult result_item;
203 204 205 206
        result_item.rect = {x1, y1, x2, y2, x3, y3, x4, y4};
        result_item.class_id = class_id;
        result_item.confidence = score;
        result->push_back(result_item);
C
cnn 已提交
207
      }
C
cnn 已提交
208
      else {
209 210 211 212 213 214 215 216 217 218 219
        // Class id
        int class_id = static_cast<int>(round(output_data_[0 + j * 6]));
        // Confidence score
        float score = output_data_[1 + j * 6];
        int xmin = (output_data_[2 + j * 6] * rw);
        int ymin = (output_data_[3 + j * 6] * rh);
        int xmax = (output_data_[4 + j * 6] * rw);
        int ymax = (output_data_[5 + j * 6] * rh);
        int wd = xmax - xmin;
        int hd = ymax - ymin;
          
220
        PaddleDetection::ObjectResult result_item;
221 222 223 224
        result_item.rect = {xmin, ymin, xmax, ymax};
        result_item.class_id = class_id;
        result_item.confidence = score;
        result->push_back(result_item);
C
cnn 已提交
225
      }
Q
qingqing01 已提交
226
    }
C
cnn 已提交
227
    start_idx += bbox_num[im_id];
Q
qingqing01 已提交
228 229 230
  }
}

C
cnn 已提交
231
void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
Q
qingqing01 已提交
232 233 234
      const double threshold,
      const int warmup,
      const int repeats,
235
      std::vector<PaddleDetection::ObjectResult>* result,
C
cnn 已提交
236
      std::vector<int>* bbox_num,
G
Guanghua Yu 已提交
237 238
      std::vector<double>* times) {
  auto preprocess_start = std::chrono::steady_clock::now();
C
cnn 已提交
239 240 241 242 243 244
  int batch_size = imgs.size();

  // in_data_batch
  std::vector<float> in_data_all;
  std::vector<float> im_shape_all(batch_size * 2);
  std::vector<float> scale_factor_all(batch_size * 2);
245 246
  std::vector<const float *> output_data_list_;
  std::vector<int> out_bbox_num_data_;
C
cnn 已提交
247
  
Q
qingqing01 已提交
248
  // Preprocess image
C
cnn 已提交
249 250 251 252 253 254 255 256 257 258 259 260
  for (int bs_idx = 0; bs_idx < batch_size; bs_idx++) {
    cv::Mat im = imgs.at(bs_idx);
    Preprocess(im);
    im_shape_all[bs_idx * 2] = inputs_.im_shape_[0];
    im_shape_all[bs_idx * 2 + 1] = inputs_.im_shape_[1];

    scale_factor_all[bs_idx * 2] = inputs_.scale_factor_[0];
    scale_factor_all[bs_idx * 2 + 1] = inputs_.scale_factor_[1];

    // TODO: reduce cost time
    in_data_all.insert(in_data_all.end(), inputs_.im_data_.begin(), inputs_.im_data_.end());
  }
261
  auto preprocess_end = std::chrono::steady_clock::now();
262
  // Prepare input tensor
263

Q
qingqing01 已提交
264 265 266 267
  auto input_names = predictor_->GetInputNames();
  for (const auto& tensor_name : input_names) {
    auto in_tensor = predictor_->GetInputHandle(tensor_name);
    if (tensor_name == "image") {
268 269
      int rh = inputs_.in_net_shape_[0];
      int rw = inputs_.in_net_shape_[1];
C
cnn 已提交
270 271
      in_tensor->Reshape({batch_size, 3, rh, rw});
      in_tensor->CopyFromCpu(in_data_all.data());
Q
qingqing01 已提交
272
    } else if (tensor_name == "im_shape") {
C
cnn 已提交
273 274
      in_tensor->Reshape({batch_size, 2});
      in_tensor->CopyFromCpu(im_shape_all.data());
Q
qingqing01 已提交
275
    } else if (tensor_name == "scale_factor") {
C
cnn 已提交
276 277
      in_tensor->Reshape({batch_size, 2});
      in_tensor->CopyFromCpu(scale_factor_all.data());
Q
qingqing01 已提交
278 279
    }
  }
280
  
Q
qingqing01 已提交
281
  // Run predictor
282 283 284 285 286
  std::vector<std::vector<float>> out_tensor_list;
  std::vector<std::vector<int>> output_shape_list;
  bool is_rbox = false;
  int reg_max = 7;
  int num_class = 80;
287
  // warmup
288
  for (int i = 0; i < warmup; i++) {
Q
qingqing01 已提交
289 290 291
    predictor_->Run();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
292 293 294 295 296 297 298 299 300 301 302 303 304 305
    for (int j = 0; j < output_names.size(); j++) {
      auto output_tensor = predictor_->GetOutputHandle(output_names[j]);
      std::vector<int> output_shape = output_tensor->shape();
      int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 
                            1, std::multiplies<int>());
      if (output_tensor->type() == paddle_infer::DataType::INT32) {
        out_bbox_num_data_.resize(out_num);
        output_tensor->CopyToCpu(out_bbox_num_data_.data());
      } else {
        std::vector<float> out_data;
        out_data.resize(out_num);
        output_tensor->CopyToCpu(out_data.data());
        out_tensor_list.push_back(out_data);
      }
306 307
    }
  }
308

G
Guanghua Yu 已提交
309
  auto inference_start = std::chrono::steady_clock::now();
310
  for (int i = 0; i < repeats; i++) {
Q
qingqing01 已提交
311 312
    predictor_->Run();
    // Get output tensor
313 314
    out_tensor_list.clear();
    output_shape_list.clear();
Q
qingqing01 已提交
315
    auto output_names = predictor_->GetOutputNames();
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    for (int j = 0; j < output_names.size(); j++) {
      auto output_tensor = predictor_->GetOutputHandle(output_names[j]);
      std::vector<int> output_shape = output_tensor->shape();
      int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 
                            1, std::multiplies<int>());
      output_shape_list.push_back(output_shape);
      if (output_tensor->type() == paddle_infer::DataType::INT32) {
        out_bbox_num_data_.resize(out_num);
        output_tensor->CopyToCpu(out_bbox_num_data_.data());
      } else {
        std::vector<float> out_data;
        out_data.resize(out_num);
        output_tensor->CopyToCpu(out_data.data());
        out_tensor_list.push_back(out_data);
      }
C
cnn 已提交
331
    }
Q
qingqing01 已提交
332
  }
G
Guanghua Yu 已提交
333 334
  auto inference_end = std::chrono::steady_clock::now();
  auto postprocess_start = std::chrono::steady_clock::now();
Q
qingqing01 已提交
335
  // Postprocessing result
336
  result->clear();
C
cnn 已提交
337
  bbox_num->clear();
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
  if (config_.arch_ == "PicoDet") {
    for (int i = 0; i < out_tensor_list.size(); i++) {
      if (i == 0) {
        num_class = output_shape_list[i][2];
      }
      if (i == config_.fpn_stride_.size()) {
        reg_max = output_shape_list[i][2] / 4 - 1;
      }
      float *buffer = new float[out_tensor_list[i].size()];
      memcpy(buffer, &out_tensor_list[i][0], 
                out_tensor_list[i].size()*sizeof(float));
      output_data_list_.push_back(buffer);
    }
    PaddleDetection::PicoDetPostProcess(
        result, output_data_list_, config_.fpn_stride_, 
        inputs_.im_shape_, inputs_.scale_factor_,
        config_.nms_info_["score_threshold"].as<float>(), 
        config_.nms_info_["nms_threshold"].as<float>(), num_class, reg_max);
    bbox_num->push_back(result->size());
  } else {
    is_rbox = output_shape_list[0][output_shape_list[0].size()-1] % 10 == 0;
    Postprocess(imgs, result, out_bbox_num_data_, out_tensor_list[0], is_rbox);
    for (int k=0; k < out_bbox_num_data_.size(); k++) {
      int tmp = out_bbox_num_data_[k];
      bbox_num->push_back(tmp);
    }
C
cnn 已提交
364
  }
365
  
G
Guanghua Yu 已提交
366 367 368 369 370 371 372 373
  auto postprocess_end = std::chrono::steady_clock::now();

  std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
  times->push_back(double(preprocess_diff.count() * 1000));
  std::chrono::duration<float> inference_diff = inference_end - inference_start;
  times->push_back(double(inference_diff.count() / repeats * 1000));
  std::chrono::duration<float> postprocess_diff = postprocess_end - postprocess_start;
  times->push_back(double(postprocess_diff.count() * 1000));
C
cnn 已提交
374
  
Q
qingqing01 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
}

std::vector<int> GenerateColorMap(int num_class) {
  auto colormap = std::vector<int>(3 * num_class, 0);
  for (int i = 0; i < num_class; ++i) {
    int j = 0;
    int lab = i;
    while (lab) {
      colormap[i * 3] |= (((lab >> 0) & 1) << (7 - j));
      colormap[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
      colormap[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
      ++j;
      lab >>= 3;
    }
  }
  return colormap;
}

}  // namespace PaddleDetection