parallel_executor.cc 12.1 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
C
chengduoZH 已提交
16
#include <string>
17
#include <tuple>
Q
qiaolongfei 已提交
18
#include <vector>
C
chengduo 已提交
19
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
20

X
clean  
Xin Pan 已提交
21
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
22

Y
Yu Yang 已提交
23
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
24
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
25
#endif
Y
Yang Yang 已提交
26

Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
yuyang18 已提交
29
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
32

Y
Yang Yang 已提交
33
namespace paddle {
Y
Yu Yang 已提交
34 35
namespace framework {

Y
Yu Yang 已提交
36 37 38
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
39
      : places_(places) {}
Y
Yu Yang 已提交
40

41 42 43 44 45 46 47 48 49 50 51
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
Y
Yu Yang 已提交
52 53
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
54
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
55
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
56

Y
Yu Yang 已提交
57
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
58
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
59
#endif
C
chengduoZH 已提交
60 61
  bool own_local_scope_;
  bool use_cuda_;
62
  bool use_all_reduce_;
Y
Yu Yang 已提交
63 64
};

65 66 67 68
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
69
ParallelExecutor::ParallelExecutor(
70
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
71
    const std::unordered_set<std::string> &params,
72 73
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
74
    Scope *scope, const std::vector<Scope *> &local_scopes,
75
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
76
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
77
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
78
  member_->global_scope_ = scope;
79
  member_->use_cuda_ = exec_strategy.use_cuda_;
80 81 82 83 84 85 86 87
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
  }
Y
Yu Yang 已提交
88

89
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
90
  // Create local scopes
91
  if (local_scopes.empty()) {
C
chengduoZH 已提交
92
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
93 94
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
95
      member_->local_scopes_.emplace_back(&scope->NewScope());
96 97
    }
  } else {
C
chengduoZH 已提交
98
    member_->own_local_scope_ = false;
99 100
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
101
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
102
    }
Y
Yu Yang 已提交
103 104
  }

C
chengduoZH 已提交
105
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
106 107
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
108 109 110 111 112 113 114 115 116
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
    ncclUniqueId *nccl_id = nullptr;
    if (nccl_id_var != nullptr) {
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
    }
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
        member_->places_, nccl_id, num_trainers, trainer_id));
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
117
#endif
C
chengduoZH 已提交
118 119 120
  }

  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
121
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
122
  }
123
// Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
124

125
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
X
Xin Pan 已提交
126
// ncclOp
Y
yuyang18 已提交
127
#ifdef PADDLE_WITH_CUDA
128
  std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
X
Xin Pan 已提交
129
      main_program, member_->places_, loss_var_name, params,
130
      member_->local_scopes_, member_->use_cuda_, member_->nccl_ctxs_.get());
S
sneaxiy 已提交
131 132 133 134 135 136 137 138 139 140 141 142

  auto max_memory_size = GetEagerDeletionThreshold();
  if (max_memory_size >= 0) {
    for (auto &place : member_->places_) {
      if (!platform::is_gpu_place(place)) continue;
      auto gpu_place = boost::get<platform::CUDAPlace>(place);
      if (gcs_[gpu_place.device] == nullptr) {
        ref_cnts_[gpu_place.device].reset(new details::ReferenceCountMap());
        cur_ref_cnts_[gpu_place.device].reset(
            new details::AtomicReferenceCountMap());
        gcs_[gpu_place.device].reset(
            new StreamGarbageCollector<Tensor>(gpu_place, max_memory_size));
S
sneaxiy 已提交
143 144
      }
    }
S
sneaxiy 已提交
145 146 147 148 149 150 151 152 153 154
    if (!gcs_.empty()) {
      auto ref_cnt_pass =
          ir::PassRegistry::Instance().Get("reference_count_pass");
      ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount, &ref_cnts_);
      ref_cnt_pass->SetNotOwned(details::kCurReferenceCount, &cur_ref_cnts_);
      ref_cnt_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
      graph = ref_cnt_pass->Apply(std::move(graph));
      graph->SetNotOwned("garbage_collector", &gcs_);
    }
  }
C
chengduoZH 已提交
155
#else
156 157 158
  std::unique_ptr<ir::Graph> graph =
      build_strategy.Apply(main_program, member_->places_, loss_var_name,
                           params, member_->local_scopes_, member_->use_cuda_);
Y
Yu Yang 已提交
159
#endif
X
Xin Pan 已提交
160

161 162 163 164 165 166 167 168 169 170 171
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
  std::vector<details::VariableInfo> var_infos;
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
    }
  }
W
Wu Yi 已提交
172 173
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
C
chengduo 已提交
174 175 176 177 178 179 180 181 182 183 184
    size_t graph_num = ir::GraphNum(*graph);
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
          << ir::GraphNum(*graph)
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
185 186
  }

Y
yuyang18 已提交
187 188 189 190 191 192
  if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
    member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, places, std::move(graph)));
  } else {
    member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, places, std::move(graph)));
C
chengduoZH 已提交
193
  }
Y
yuyang18 已提交
194 195 196 197

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
      exec_strategy, member_->local_scopes_, std::move(var_infos),
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
198 199
}

Y
Yancey1989 已提交
200
void ParallelExecutor::BCastParamsToDevices(
201
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
202
  // the initializing bcast, all vars would be bcast from device(0).
203
  for (auto &var : vars) {
X
Xin Pan 已提交
204
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
205
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
206 207 208 209
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
210
    if (!main_tensor.IsInitialized()) {
211
      VLOG(30) << "one in var not inited, return!";
212 213
      continue;
    }
214 215
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
C
chengduoZH 已提交
216
#ifdef PADDLE_WITH_CUDA
217
      std::vector<void *> buffers;
218 219 220 221 222
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
223

X
Xin Pan 已提交
224
        if (i == 0) {
225 226
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
227
          auto local_scope = member_->local_scopes_[i];
228
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
229
          t->Resize(dims);
230
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
231
        }
232
        buffers.push_back(buffer);
233
      }
234

235 236 237 238 239 240
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
241 242
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
243
        }
244
        member_->nccl_ctxs_->WaitAll();
245
      }
C
chengduoZH 已提交
246 247 248
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
249 250
    } else {
      platform::CPUPlace cpu;
Y
Yancey1989 已提交
251
      for (size_t i = 0; i < member_->places_.size(); ++i) {
X
Xin Pan 已提交
252
        if (i == 0) continue;
Y
Yancey1989 已提交
253

254 255
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
256 257 258 259

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
260 261 262 263 264 265
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
266
      }
Y
Stash  
Yu Yang 已提交
267 268
    }
  }
Y
Yu Yang 已提交
269
}
Y
Yu Yang 已提交
270

Y
Yu Yang 已提交
271 272
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
273
  platform::RecordBlock b(0);
S
sneaxiy 已提交
274 275 276
#ifdef PADDLE_WITH_CUDA
  if (!gcs_.empty()) {
    ResetReferenceCount();
S
sneaxiy 已提交
277 278 279 280 281 282 283
    for (auto &pair : cur_ref_cnts_) {
      auto &name_map = *(pair.second);
      for (auto &fetch_name : fetch_tensors) {
        name_map.erase(fetch_name);
      }
      name_map.erase(fetched_var_name);
    }
S
sneaxiy 已提交
284 285
  }
#endif
S
sneaxiy 已提交
286 287 288
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
289
}
Y
Yu Yang 已提交
290

Y
Yu Yang 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
310 311 312 313 314
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
315 316
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
317
      auto t =
Y
Yu Yang 已提交
318
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
319 320
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
321 322 323 324
    }
  }
}

325
ParallelExecutor::~ParallelExecutor() {
326 327
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
328
  }
S
sneaxiy 已提交
329 330
  // member_ must be destructed before gcs_ since the destructor of
  // ReferenceCountOpHandle use raw pointers of gcs_ inside.
S
sneaxiy 已提交
331
  member_.reset();
332 333
}

Y
Yu Yang 已提交
334
}  // namespace framework
Y
Yang Yang 已提交
335
}  // namespace paddle
S
sneaxiy 已提交
336 337 338
#ifdef PADDLE_WITH_CUDA
USE_PASS(reference_count_pass);
#endif