deconv2d_op.h 7.0 KB
Newer Older
Z
deconv  
zchen0211 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Z
zchen0211 已提交
26
using DDim = framework::DDim;
Z
deconv  
zchen0211 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

// Define Op classes in .h file so that other deconv
// operator implementations can reuse the code.
class Deconv2DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  Deconv2DOpMaker(framework::OpProto* proto,
                  framework::OpAttrChecker* op_checker);
};

class Deconv2DOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override;
};

class Deconv2DOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override;
};

Z
zchen0211 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
template <typename Place, typename T>
class GemmDeconv2DKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    // filter will be reshaped, so we do not use constant pointer here
    Tensor filter = *context.Input<Tensor>("Filter");

    Tensor* output = context.Output<Tensor>("Output");

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");

    // no paddings and groups allowed in deconv

    int N = input->dims()[0];
    int M = input->dims()[1];
    int H = input->dims()[2];
    int W = input->dims()[3];

    int K_H = filter.dims()[2];
    int K_W = filter.dims()[3];

    int C = output->dims()[1];  // output channels
    int O_H = output->dims()[2];
    int O_W = output->dims()[3];

    paddle::operators::math::Col2ImFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        col2im;

    // use col_shape in the im2col and col2im calculation
    framework::DDim col_shape = {C, K_H, K_W, H, W};

    // use col_matrix_shape in the gemm calculation
    framework::DDim col_matrix_shape = {M * K_H * K_W, H * W};

    Tensor col;
    col.mutable_data<T>(col_shape, context.GetPlace());
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix = col;
    col_matrix.Resize(col_matrix_shape);

    DDim output_shape = {C, O_H, O_W};
    DDim input_matrix_shape = {M, H * W};

    DDim filter_matrix_shape = {M, C * K_H * K_W};
    filter.Resize(filter_matrix_shape);

    // deconvolution: gemm + col2im (similar to conv-backward on input)

    output->mutable_data<T>(context.GetPlace());
    auto t = framework::EigenVector<T>::Flatten(*output);
    t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));

    for (int i = 0; i < N; i++) {
      // batch with size (M, H * W)
      Tensor input_batch = input->Slice<T>(i, i + 1).Resize(input_matrix_shape);
      // output size: (C, O_H, O_W)
      Tensor output_batch = output->Slice<T>(i, i + 1).Resize(output_shape);

      // filter size: (Co, Ci * Hf * Wf)

      // col_matrix = filter * input_batch
      // of shape (C * K_H * K_W, H * W)
      math::matmul<Place, T>(context.device_context(), filter, true,
                             input_batch, false, T(1.0), &col_matrix, T(0.0));

      col2im(context.device_context(), output_batch, col_matrix, strides[0],
             strides[1], 0, 0);
    }
  }
};

/*
template <typename Place, typename T>
class GemmDeconvGrad2DKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));

    // For filter, we do not use const pointer
    // but we should avoid
    Tensor filter = *context.Input<Tensor>("Filter");

    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");

    // no paddings and groups allowed in deconv

    int N = input->dims()[0];
    int M = input->dims()[1];
    int H = input->dims()[2];
    int W = input->dims()[3];

    int K_H = filter.dims()[2];
    int K_W = filter.dims()[3];

    int C = output->dims()[1]; // output channels
    int O_H = output->dims()[2];
    int O_W = output->dims()[3];

    paddle::operators::math::Col2ImFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        col2im;

    // use col_shape in the im2col and col2im calculation
    framework::DDim col_shape = {C, K_H, K_W, H, W};

    // use col_matrix_shape in the gemm calculation
    framework::DDim col_matrix_shape = {M * K_H * K_W, H * W};

    Tensor col;
    col.mutable_data<T>(col_shape, context.GetPlace());
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix = col;
    col_matrix.Resize(col_matrix_shape);

    DDim output_shape = {C, O_H, O_W};
    DDim input_matrix_shape = {M, H * W};

    DDim filter_matrix_shape = {M, C* K_H * K_W};
    filter.Resize(filter_matrix_shape);

    // deconvolution: gemm + col2im (similar to conv-backward on input)

    output->mutable_data<T>(context.GetPlace());
    auto t = framework::EigenVector<T>::Flatten(*output);
    t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));

    for (int i = 0; i < N; i++) {
      // batch with size (M, H * W)
      Tensor input_batch =
          input->Slice<T>(i, i + 1).Resize(input_matrix_shape);
      // output size: (C, O_H, O_W)
      Tensor output_batch =
          output->Slice<T>(i, i + 1).Resize(output_shape);

      // filter size: (Co, Ci * Hf * Wf)

      // col_matrix = filter * input_batch
      // of shape (C * K_H * K_W, H * W)
      math::matmul<Place, T>(context.device_context(), filter, true,
                             input_batch, false, T(1.0), &col_matrix,
                             T(0.0));

      col2im(context.device_context(), output_batch, col_matrix, strides[0],
               strides[1], 0, 0);
    }
  }
};
*/

Z
deconv  
zchen0211 已提交
214 215
}  // namespace operators
}  // namespace paddle