lod_reset_op.cc 6.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lod_reset_op.h"
16 17 18 19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

class LoDResetOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LoDResetOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LoDResetOp should not be null.");
29 30

    if (!ctx->HasInput("Y")) {
31
      auto level0 = ctx->Attrs().Get<std::vector<int>>("target_lod");
32
      PADDLE_ENFORCE_GT(level0.size(), 1,
Y
yangyaming 已提交
33
                        "If Input(Y) not provided, the target lod should be "
34
                        "specified by attribute `target_lod`.");
35 36 37 38 39
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }

 protected:
40
  framework::OpKernelType GetExpectedKernelType(
41 42 43 44 45 46 47 48 49
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
        ctx.device_context());
  }
};

class LoDResetOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
50
  void Make() override {
51 52 53 54 55
    AddInput("X",
             "(Tensor, LoDTensor) Input variable of LoDResetOp which "
             "could be a Tensor or LoDTensor, where the data of output "
             "variable inherits from.");
    AddInput("Y",
Y
yangyaming 已提交
56 57 58 59
             "(Tensor, LoDTensor, optional) If provided and Y is LoDTensor, "
             "lod of Input(Y) would be considered as the target lod first, "
             "otherwise data of Input(Y) would be considered as the "
             "target lod.")
60
        .AsDispensable();
61 62 63
    AddOutput("Out",
              "(LoDTensor) Output variable of LoDResetOp which should be a "
              "LoDTensor.");
64 65 66 67 68
    AddAttr<std::vector<int>>("target_lod",
                              "The target level 0 LoD from Attr().")
        .SetDefault(std::vector<int>{});
    AddComment(R"DOC(LoDReset operator

69
Set LoD of `X` to a new one specified by `Y` or attribute `target_lod`. When `Y`
Y
yangyaming 已提交
70 71 72 73 74
provided and `Y` is a LoDTensor, `Y.lod` would be considered as target LoD
first, otherwise `Y.data` would be considered as target LoD. If `Y` is not
provided, target LoD should be specified by attribute `target_lod`.
If target LoD is specified by `Y.data` or `target_lod`, only one level LoD
is supported.
75

Y
yangyaming 已提交
76
Example 1:
77

Y
yangyaming 已提交
78 79
Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,     2,                   5      6 ]]
80 81
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]
82

Y
yangyaming 已提交
83
attr(target_lod): [0, 4, 6]
84

Y
yangyaming 已提交
85
then we get a 1-level LoDTensor:
86 87 88
    Out.lod =  [[ 0,                   4,            6 ]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]
89

Y
yangyaming 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
Example 2:

Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,     2,                   5      6 ]]
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]

input(Y) is a Tensor:
    Y.data = [[0, 2, 6]]
    Y.dims = [1, 3]

then we get a 1-level LoDTensor:
    Out.lod =  [[ 0,     2,                          6 ]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]

Example 3:

Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,      2,                   5     6 ]]
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]

input(Y) is a 2-level LoDTensor:
    Y.lod =  [[0, 2, 4], [0, 2, 5, 6]]
    Y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
    Y.dims = [6, 1]

then we get a 2-level LoDTensor:
    Out.lod =  [[0, 2, 4], [0, 2, 5, 6]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]

123 124 125 126 127 128 129 130 131
)DOC");
  }
};

class LoDResetGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
132 133
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LoDResetGradOp should not be null.");
134
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
135 136 137 138 139 140 141
                   "Input(Out@Grad) of LoDResetGradOp should not be null.");

    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
      ctx->ShareLoD("X", /*->*/ x_grad_name);
    }
142 143 144
  }

 protected:
145
  framework::OpKernelType GetExpectedKernelType(
146 147 148 149 150 151 152 153 154 155 156
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
        ctx.device_context());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
157
REGISTER_OPERATOR(lod_reset, ops::LoDResetOp, ops::LoDResetOpMaker,
158 159
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(lod_reset_grad, ops::LoDResetGradOp);
160 161 162 163 164
REGISTER_OP_CPU_KERNEL(
    lod_reset, ops::LoDResetKernel<paddle::platform::CPUPlace, float>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, double>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, int>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, int64_t>);
165 166
REGISTER_OP_CPU_KERNEL(
    lod_reset_grad, ops::LoDResetGradKernel<paddle::platform::CPUPlace, float>,
167 168 169
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, double>,
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, int>,
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, int64_t>);