conv_fusion_op.cu.cc 10.4 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/cudnn_helper.h"

Q
qingqing01 已提交
19 20 21
DEFINE_int64(cudnn_exhaustive_search_times, -1,
             "Exhaustive search times for cuDNN convolution, "
             "defalut is 1, only search once.");
Q
qingqing01 已提交
22 23 24 25

namespace paddle {
namespace operators {

H
hjchen2 已提交
26
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
27 28 29 30 31 32
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;
33 34
using framework::AlgorithmsCache;

Q
qingqing01 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

template <typename T>
class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.Input<Tensor>("Bias");
    PADDLE_ENFORCE(bias, "The bias should not be null.");
    auto* residual = ctx.Input<Tensor>("ResidualData");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    const std::string activation = ctx.Attr<std::string>("activation");
    int groups = ctx.Attr<int>("groups");
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* bias_data = bias->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    const T* residual_data = residual ? residual->data<T>() : output_data;

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedTensorDescriptor bias_desc;
    ScopedConvolutionDescriptor conv_desc;
    ScopedActivationDescriptor act_desc;
    DataLayout layout = DataLayout::kNCHW;
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
        cudnn_conv_desc, groups));

    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()));
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()));
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()));
    // Now only support NCHW
    std::vector<int> bias_dim = {1, static_cast<int>(output->dims()[1]), 1, 1};
    cudnnTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    cudnnActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);

    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
          std::max(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
    }

    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
    auto handle = dev_ctx.cudnn_handle();
C
chengduo 已提交
109
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
Q
qingqing01 已提交
110 111 112 113 114 115

    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
        cudnn_conv_desc, CUDNN_DEFAULT_MATH));

    auto x_dims = framework::vectorize(input->dims());
    auto f_dims = framework::vectorize(filter->dims());
116
    if (!exhaustive_search) {
Q
qingqing01 已提交
117 118 119 120 121 122
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
          handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
          cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
          workspace_size_limit, &algo));
      VLOG(3) << "cuDNN forward algo " << algo;
    } else {
Q
qingqing01 已提交
123 124 125 126
      auto search_func = [&]() {
        int returned_algo_count;
        std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
            fwd_perf_stat;
C
chengduo 已提交
127 128 129 130 131 132 133 134 135
        auto cudnn_find_func = [&](void* cudnn_workspace) {
          CUDNN_ENFORCE(
              platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                  handle, cudnn_input_desc, input_data, cudnn_filter_desc,
                  filter_data, cudnn_conv_desc, cudnn_output_desc, output_data,
                  kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
                  fwd_perf_stat.data(), cudnn_workspace, workspace_size_limit));
        };
        workspace_handle.RunFunc(cudnn_find_func, workspace_size_limit);
Q
qingqing01 已提交
136 137 138 139 140 141 142 143
        VLOG(3) << "Perf result: (algo: stat, time, memory)";
        for (int i = 0; i < returned_algo_count; ++i) {
          const auto& stat = fwd_perf_stat[i];
          VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time << " "
                  << stat.memory;
        }
        return fwd_perf_stat[0].algo;
      };
144 145
      AlgorithmsCache<cudnnConvolutionFwdAlgo_t>& algo_cache =
          ctx.GetKernelConfig<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>(0);
Q
qingqing01 已提交
146 147 148
      int search_times = ctx.Attr<int>("search_times");
      search_times = std::max(
          static_cast<int>(FLAGS_cudnn_exhaustive_search_times), search_times);
149
      // TODO(dangqingqing): Unify this if-else.
Q
qingqing01 已提交
150 151 152 153
      if (search_times > 0) {
        // The searched algo will be cached by `search_times` times for
        // different input dimension. For other dimensions, select the algo
        // of closest area.
154 155
        algo = algo_cache.GetAlgorithm(x_dims[2] * x_dims[3], search_times, 0,
                                       search_func);
Q
qingqing01 已提交
156
      } else {
157 158
        algo = algo_cache.GetAlgorithm(x_dims, f_dims, strides, paddings,
                                       dilations, 0, search_func);
Q
qingqing01 已提交
159 160 161 162 163 164 165 166 167 168
      }
      VLOG(3) << "choose algo " << algo;
    }

    CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, algo, &workspace_size_in_bytes));
    PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit,
                      "workspace_size to be allocated exceeds the limit");

N
nhzlx 已提交
169
    if ((activation == "identity") && (!residual)) {
170 171 172 173 174 175
      // Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algo is
      // enabled with CUDNN_ACTIVATION_IDENTITY in cuDNN lib.
      // But test in some case, the speed is slower, change to use
      // cudnnConvolutionForward and cudnnAddTensor
      // ------------- cudnn conv forward and bias add ---------------------
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
C
chengduo 已提交
176 177 178 179 180 181 182
      auto cudnn_func = [&](void* cudnn_workspace) {
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
            handle, &alpha, cudnn_input_desc, input_data, cudnn_filter_desc,
            filter_data, cudnn_conv_desc, algo, cudnn_workspace,
            workspace_size_in_bytes, &beta, cudnn_output_desc, output_data));
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
183 184
      CUDNN_ENFORCE(platform::dynload::cudnnAddTensor(
          handle, &alpha, cudnn_bias_desc, bias_data, &alpha, cudnn_output_desc,
Q
qingqing01 已提交
185
          output_data));
186 187 188 189 190 191 192
    } else {
      if (activation == "identity") {
        algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
      }
      // ------------------- cudnn conv+bias+act forward --------------------
      ScalingParamType<T> alpha1 = 1.0f;
      ScalingParamType<T> alpha2 = residual ? 1.0f : 0.0f;
C
chengduo 已提交
193 194 195 196 197 198 199 200 201
      auto cudnn_func = [&](void* cudnn_workspace) {
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBiasActivationForward(
            handle, &alpha1, cudnn_input_desc, input_data, cudnn_filter_desc,
            filter_data, cudnn_conv_desc, algo, cudnn_workspace,
            workspace_size_in_bytes, &alpha2, cudnn_output_desc, residual_data,
            cudnn_bias_desc, bias_data, cudnn_act_desc, cudnn_output_desc,
            output_data));
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
202
    }
Q
qingqing01 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    std::vector<int> channels = ctx.Attr<std::vector<int>>("split_channels");
    if (channels.size()) {
      auto outs = ctx.MultiOutput<framework::Tensor>("Outputs");
      if (x_dims[0] == 1) {
        // share data with Output
        framework::Tensor t;
        t.ShareDataWith(*output);
        auto y_dims = output->dims();
        t.Resize({y_dims[1], y_dims[2], y_dims[3]});
        int s = 0;
        for (size_t i = 0; i < channels.size(); ++i) {
          int e = s + channels[i];
          outs[i]->ShareDataWith(t.Slice(s, e));
          outs[i]->Resize({x_dims[0], channels[i], y_dims[2], y_dims[3]});
          s = e;
        }
      } else {
        // TODO(qingiqng): do copy when batch size large than 1
        PADDLE_THROW("Batch size greater than 1 is Unsupported");
      }
    }
Q
qingqing01 已提交
224 225
  }
};
D
Dang Qingqing 已提交
226
#endif
Q
qingqing01 已提交
227 228 229 230

}  // namespace operators
}  // namespace paddle

H
hjchen2 已提交
231
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
232 233 234
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(conv2d_fusion, ops::CUDNNConvFusionOpKernel<float>,
                        ops::CUDNNConvFusionOpKernel<double>);
D
Dang Qingqing 已提交
235
#endif