framework.py 12.2 KB
Newer Older
Y
Yu Yang 已提交
1
import paddle.v2.framework.core as core
F
fengjiayi 已提交
2
import paddle.v2.framework.proto.framework_pb2 as framework_pb2
Y
Yu Yang 已提交
3
import collections
Y
Yu Yang 已提交
4
import numpy as np
Y
Yu Yang 已提交
5
import copy
Y
Yu Yang 已提交
6

Y
Yu Yang 已提交
7
__all__ = ['Block', 'Variable', 'Program', 'Operator']
Y
Yu Yang 已提交
8 9 10


class Variable(object):
Y
Yu Yang 已提交
11 12
    def __init__(self,
                 block,
Y
Yu Yang 已提交
13
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
14 15 16 17 18
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
                 **kwargs):
Y
Yu Yang 已提交
19 20 21 22
        self.block = block

        if name is None:
            name = Variable._unique_var_name_()
Y
Yu Yang 已提交
23
        try:
24
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
25 26
            is_new_var = False
        except core.EnforceNotMet:
27
            self.desc = self.block.desc.new_var(name)
Y
Yu Yang 已提交
28
            is_new_var = True
Y
Yu Yang 已提交
29

Y
Yu Yang 已提交
30 31 32 33 34 35 36 37
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
38
        if shape is not None:
Y
Yu Yang 已提交
39
            if is_new_var:
40
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
41 42 43 44 45 46 47 48
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
49
        if dtype is not None:
Y
Yu Yang 已提交
50 51
            if not isinstance(dtype, core.DataType):
                dtype = Variable._convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
52
            if is_new_var:
53
                self.desc.set_data_type(dtype)
Y
Yu Yang 已提交
54 55 56 57 58 59 60 61
            else:
                old_dtype = self.data_type()
                if dtype != old_shape:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
62 63

        if lod_level is not None:
Y
Yu Yang 已提交
64
            if is_new_var:
65
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
66 67 68 69 70 71 72
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
Y
Yu Yang 已提交
73
        self.block.vars[name] = self
Y
Yu Yang 已提交
74
        self.op = None
Y
Yu Yang 已提交
75

76 77 78 79 80 81 82
    def __str__(self):
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.VarDesc.FromString(str(protostr))
        return proto.__str__()

    __repr__ = __str__

Y
Yu Yang 已提交
83 84
    @property
    def name(self):
85
        return self.desc.name()
Y
Yu Yang 已提交
86 87 88 89

    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
90
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
91 92 93

    @property
    def data_type(self):
94
        return self.desc.data_type()
Y
Yu Yang 已提交
95 96 97

    @property
    def lod_level(self):
98
        return self.desc.lod_level()
Y
Yu Yang 已提交
99 100 101 102 103 104

    @staticmethod
    def _unique_var_name_():
        uid = core.unique_integer()  # unique during whole process.
        return "_generated_var_%d" % uid

Y
Yu Yang 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    @staticmethod
    def _convert_np_dtype_to_dtype_(np_dtype):
        dtype = np.dtype(np_dtype)
        if dtype == np.float32:
            return core.DataType.FP32
        elif dtype == np.float64:
            return core.DataType.FP64
        elif dtype == np.float16:
            return core.DataType.FP16
        elif dtype == np.int32:
            return core.DataType.INT32
        elif dtype == np.int16:
            return core.DataType.INT16
        elif dtype == np.int64:
            return core.DataType.INT64
        elif dtype == np.bool:
            return core.DataType.BOOL
        else:
            raise ValueError("Not supported numpy dtype " + str(dtype))

Y
Yu Yang 已提交
125

F
fengjiayi 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
    :return: A list of registered OpProto.
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
        op_proto = framework_pb2.OpProto.FromString(str(pbstr))
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
            '_instance'), 'Please use `instance()` to get OpProtoHolder opject!'
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
        assert type in self.op_proto_map, "Operator \"%s\" has not been registered." % type
        return self.op_proto_map[type]


Y
Yu Yang 已提交
160
class Operator(object):
F
fengjiayi 已提交
161 162 163 164 165 166
    def __init__(self,
                 block,
                 desc,
                 type=None,
                 inputs=None,
                 outputs=None,
Y
Yu Yang 已提交
167 168
                 attrs=None):
        self.block = block
F
Update  
fengjiayi 已提交
169
        self.desc = desc
F
fengjiayi 已提交
170 171 172 173 174
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
175
        self.desc.set_type(type)
F
fengjiayi 已提交
176
        proto = OpProtoHolder.instance().get_op_proto(type)
F
Update  
fengjiayi 已提交
177

Y
Yu Yang 已提交
178
        if inputs is not None:
F
fengjiayi 已提交
179
            for in_proto in proto.inputs:
F
Update  
fengjiayi 已提交
180 181 182 183 184 185 186 187 188
                in_argus = inputs[in_proto.name]
                if not isinstance(in_argus, list):
                    in_argus = [in_argus]
                if not in_proto.duplicable and len(in_argus) > 1:
                    raise ValueError(
                        "Input %s expects only one input, but %d are given." %
                        (in_proto.name, len(in_argus)))
                in_argu_names = []
                for argu in in_argus:
F
fengjiayi 已提交
189
                    in_argu_names.append(argu.name)
F
Update  
fengjiayi 已提交
190
                self.desc.set_input(in_proto.name, in_argu_names)
F
Update  
fengjiayi 已提交
191

Y
Yu Yang 已提交
192
        if outputs is not None:
F
fengjiayi 已提交
193
            for out_proto in proto.outputs:
F
Update  
fengjiayi 已提交
194 195 196 197 198 199 200 201 202
                out_argus = outputs[out_proto.name]
                if not isinstance(out_argus, list):
                    out_argus = [out_argus]
                if not out_proto.duplicable and len(out_argus) > 1:
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
                        (out_proto.name, len(out_argus)))
                out_argu_names = []
                for argu in out_argus:
F
fengjiayi 已提交
203
                    out_argu_names.append(argu.name)
F
fengjiayi 已提交
204
                    argu.op = self
F
Update  
fengjiayi 已提交
205 206
                self.desc.set_output(out_proto.name, out_argu_names)

Y
Yu Yang 已提交
207
        if attrs is not None:
F
fengjiayi 已提交
208
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
209 210 211 212 213 214 215
                attr_name = attr.name
                if not attr_name in attrs:
                    continue
                if not isinstance(attrs[attr_name], Block):
                    self.desc.set_attr(attr_name, attrs[attr_name])
                else:
                    self.desc.set_block_attr(attr_name, attrs[attr_name].desc)
Y
Yu Yang 已提交
216

217
        self.desc.check_attrs()
F
fengjiayi 已提交
218 219
        self.desc.infer_shape(self.block.desc)

220 221 222 223 224 225 226
    def __str__(self):
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.OpDesc.FromString(str(protostr))
        return proto.__str__()

    __repr__ = __str__

F
fengjiayi 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
        return self.desc.input(name)

    @property
    def input_names(self):
        return self.desc.input_names()

    def output(self, name):
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

    def has_attr(self, name):
        return self.desc.has_attr(name)

    def attr_type(self, name):
        return self.desc.attr_type(name)

    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
        return self.desc.attr(name)

    def block_attr(self, name):
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
260 261


Y
Yu Yang 已提交
262 263
class Block(object):
    def __init__(self, program, idx):
F
fengjiayi 已提交
264
        self.desc = program.desc.block(idx)
Y
Yu Yang 已提交
265
        self.vars = dict()  # var_name --> var
Y
Yu Yang 已提交
266
        self.ops = collections.deque()  # operator list
Y
Yu Yang 已提交
267 268
        self.program = program

269 270 271 272 273 274 275
    def __str__(self):
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.BlockDesc.FromString(str(protostr))
        return proto.__str__()

    __repr__ = __str__

Y
Yu Yang 已提交
276 277
    @property
    def parent_idx(self):
F
fengjiayi 已提交
278
        return self.desc.parent
Y
Yu Yang 已提交
279 280 281

    @property
    def idx(self):
F
fengjiayi 已提交
282
        return self.desc.id
Y
Yu Yang 已提交
283

Y
Yu Yang 已提交
284 285 286
    def create_var(self, *args, **kwargs):
        return Variable(self, *args, **kwargs)

Y
Yu Yang 已提交
287 288 289 290
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
        return Parameter(global_block, *args, **kwargs)

Y
Yu Yang 已提交
291
    def append_op(self, *args, **kwargs):
F
fengjiayi 已提交
292
        op_desc = self.desc.append_op()
F
Update  
fengjiayi 已提交
293
        op = Operator(self, op_desc, *args, **kwargs)
Y
Yu Yang 已提交
294 295 296 297
        self.ops.append(op)
        return op

    def prepend_op(self, *args, **kwargs):
F
fengjiayi 已提交
298 299
        op_desc = self.desc.prepend_op()
        op = Operator(self, op_desc, *args, **kwargs)
Y
Yu Yang 已提交
300 301 302
        self.ops.appendleft(op)
        return op

Y
Yu Yang 已提交
303 304

class Program(object):
Y
Yu Yang 已提交
305 306 307 308 309 310 311 312
    @classmethod
    def instance(cls):
        # From https://stackoverflow.com/questions/8212053
        # Making Program as a Singleton class.
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

Y
Yu Yang 已提交
313
    def __init__(self):
Y
Yu Yang 已提交
314 315
        assert not hasattr(self.__class__,
                           '_instance'), 'Do not call constructor directly!'
F
fengjiayi 已提交
316
        self.desc = core.ProgramDesc.instance()
Y
Yu Yang 已提交
317 318 319
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0

320 321 322 323 324 325 326
    def __str__(self):
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.ProgramDesc.FromString(str(protostr))
        return proto.__str__()

    __repr__ = __str__

Y
Yu Yang 已提交
327 328 329 330 331 332 333 334
    def global_block(self):
        return self.blocks[0]

    def current_block(self):
        return self.blocks[self.current_block_idx]

    def create_block(self):
        new_block_idx = len(self.blocks)
F
fengjiayi 已提交
335
        self.desc.append_block(self.current_block().desc)
Y
Yu Yang 已提交
336 337 338 339 340 341 342 343
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
        self.current_block_idx = self.current_block().parent_idx


Y
Yu Yang 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
class Parameter(Variable):
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")

        Variable.__init__(self, block, shape=shape, dtype=dtype, **kwargs)
        self.trainable = kwargs.get('trainable', True)
        self.init_attr = kwargs.get('initialize_attr', {
            'type': 'uniform_random',
            'min': -1.0,
            'max': 1.0
        })

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})
        self._append_initialize_ops_()

    def _append_initialize_ops_(self):
        attr = copy.deepcopy(self.init_attr)
        op_type = attr.pop('type', None)
        block = self.block
        assert isinstance(block, Block)
        shape = self.shape
        attr['dims'] = shape
        attr['data_type'] = int(self.data_type)
        op = block.prepend_op(
            type=op_type, inputs=None, outputs={'Out': [self]}, attrs=attr)
        self.op = op


Y
Yu Yang 已提交
380
# program is a global instance.
Y
Yu Yang 已提交
381
g_program = Program.instance()