reader.py 7.9 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import traceback
import six
import sys
import multiprocessing as mp
if sys.version_info >= (3, 0):
    import queue as Queue
else:
    import Queue
import numpy as np

from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler

from ppdet.core.workspace import register, serializable, create
from . import transform

from ppdet.utils.logger import setup_logger
logger = setup_logger('reader')


class Compose(object):
    def __init__(self, transforms, num_classes=81):
        self.transforms = transforms
        self.transforms_cls = []
        for t in self.transforms:
            for k, v in t.items():
                op_cls = getattr(transform, k)
                self.transforms_cls.append(op_cls(**v))
                if hasattr(op_cls, 'num_classes'):
                    op_cls.num_classes = num_classes

    def __call__(self, data):
        for f in self.transforms_cls:
            try:
                data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
                logger.warn("fail to map op [{}] with error: {} and stack:\n{}".
                            format(f, e, str(stack_info)))
                raise e

        return data


class BatchCompose(Compose):
    def __init__(self, transforms, num_classes=81):
        super(BatchCompose, self).__init__(transforms, num_classes)
        self.output_fields = mp.Manager().list([])
        self.lock = mp.Lock()

    def __call__(self, data):
        for f in self.transforms_cls:
            try:
                data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
                logger.warn("fail to map op [{}] with error: {} and stack:\n{}".
                            format(f, e, str(stack_info)))
                raise e

        # parse output fields by first sample
        # **this shoule be fixed if paddle.io.DataLoader support**
        # For paddle.io.DataLoader not support dict currently,
        # we need to parse the key from the first sample,
        # BatchCompose.__call__ will be called in each worker
        # process, so lock is need here.
        if len(self.output_fields) == 0:
            self.lock.acquire()
            if len(self.output_fields) == 0:
                for k, v in data[0].items():
                    # FIXME(dkp): for more elegent coding
                    if k not in ['flipped', 'h', 'w']:
                        self.output_fields.append(k)
            self.lock.release()

        data = [[data[i][k] for k in self.output_fields]
                for i in range(len(data))]
        data = list(zip(*data))

        batch_data = [np.stack(d, axis=0) for d in data]
        return batch_data


class BaseDataLoader(object):
    __share__ = ['num_classes']

    def __init__(self,
                 inputs_def=None,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 drop_empty=True,
                 num_classes=81,
                 with_background=True,
                 **kwargs):
        # sample transform
        self._sample_transforms = Compose(
            sample_transforms, num_classes=num_classes)

        # batch transfrom 
        self._batch_transforms = BatchCompose(batch_transforms, num_classes)

        self.batch_size = batch_size
        self.shuffle = shuffle
        self.drop_last = drop_last
        self.with_background = with_background
        self.kwargs = kwargs

    def __call__(self,
                 dataset,
                 worker_num,
                 batch_sampler=None,
                 return_list=False,
                 use_prefetch=True):
        self.dataset = dataset
        self.dataset.parse_dataset(self.with_background)
        # get data
        self.dataset.set_transform(self._sample_transforms)
        # set kwargs
        self.dataset.set_kwargs(**self.kwargs)
        # batch sampler
        if batch_sampler is None:
            self._batch_sampler = DistributedBatchSampler(
                self.dataset,
                batch_size=self.batch_size,
                shuffle=self.shuffle,
                drop_last=self.drop_last)
        else:
            self._batch_sampler = batch_sampler

        self.dataloader = DataLoader(
            dataset=self.dataset,
            batch_sampler=self._batch_sampler,
            collate_fn=self._batch_transforms,
            num_workers=worker_num,
            return_list=return_list,
            use_buffer_reader=use_prefetch,
            use_shared_memory=False)
        self.loader = iter(self.dataloader)

        return self

    def __len__(self):
        return len(self._batch_sampler)

    def __iter__(self):
        return self

    def __next__(self):
        # pack {filed_name: field_data} here
        # looking forward to support dictionary
        # data structure in paddle.io.DataLoader
        try:
            data = next(self.loader)
            return {
                k: v
                for k, v in zip(self._batch_transforms.output_fields, data)
            }
        except StopIteration:
            self.loader = iter(self.dataloader)
            six.reraise(*sys.exc_info())

    def next(self):
        # python2 compatibility
        return self.__next__()


@register
class TrainReader(BaseDataLoader):
    def __init__(self,
                 inputs_def=None,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=True,
                 drop_last=True,
                 drop_empty=True,
                 num_classes=81,
                 with_background=True,
                 **kwargs):
        super(TrainReader, self).__init__(inputs_def, sample_transforms,
                                          batch_transforms, batch_size, shuffle,
                                          drop_last, drop_empty, num_classes,
                                          with_background, **kwargs)


@register
class EvalReader(BaseDataLoader):
    def __init__(self,
                 inputs_def=None,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=True,
                 drop_empty=True,
                 num_classes=81,
                 with_background=True,
                 **kwargs):
        super(EvalReader, self).__init__(inputs_def, sample_transforms,
                                         batch_transforms, batch_size, shuffle,
                                         drop_last, drop_empty, num_classes,
                                         with_background, **kwargs)


@register
class TestReader(BaseDataLoader):
    def __init__(self,
                 inputs_def=None,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 drop_empty=True,
                 num_classes=81,
                 with_background=True,
                 **kwargs):
        super(TestReader, self).__init__(inputs_def, sample_transforms,
                                         batch_transforms, batch_size, shuffle,
                                         drop_last, drop_empty, num_classes,
                                         with_background, **kwargs)