test_reduce_op.py 6.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
guosheng 已提交
15 16
import unittest
import numpy as np
17
from op_test import OpTest
G
guosheng 已提交
18 19


20
class TestSumOp(OpTest):
G
guosheng 已提交
21
    def setUp(self):
22
        self.op_type = "reduce_sum"
23
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
24
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
G
guosheng 已提交
25

26 27
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
28

29 30
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
31 32


33 34 35
class TestMeanOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_mean"
36
        self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
W
whs 已提交
37 38 39 40
        self.attrs = {'dim': [1]}
        self.outputs = {
            'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
41

42 43
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
44

45 46
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
47 48


49 50
class TestMaxOp(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
51 52

    def setUp(self):
53
        self.op_type = "reduce_max"
54
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
55 56 57 58
        self.attrs = {'dim': [-1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }
59 60 61

    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
62 63


64 65
class TestMinOp(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
66

67 68
    def setUp(self):
        self.op_type = "reduce_min"
69
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
70 71 72 73
        self.attrs = {'dim': [2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
74

75 76
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
77 78


79 80 81 82 83 84 85 86 87 88 89 90 91
class TestProdOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_prod"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].prod(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


Q
qiaolongfei 已提交
92
class Test1DReduce(OpTest):
G
guosheng 已提交
93
    def setUp(self):
94
        self.op_type = "reduce_sum"
Q
qiaolongfei 已提交
95 96
        self.inputs = {'X': np.random.random(20).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
97 98 99

    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
100

101 102
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
103 104


Q
qiaolongfei 已提交
105
class Test2DReduce0(Test1DReduce):
G
guosheng 已提交
106
    def setUp(self):
107
        self.op_type = "reduce_sum"
Q
qiaolongfei 已提交
108 109
        self.attrs = {'dim': [0]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
110 111 112
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}


Q
qiaolongfei 已提交
113 114 115 116 117 118
class Test2DReduce1(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum(axis=1)}
G
guosheng 已提交
119 120


Q
qiaolongfei 已提交
121 122 123 124 125 126 127 128 129 130 131 132
class TestKeepDimReduce(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2], 'keep_dim': True}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=self.attrs['keep_dim'])
        }


class TestReduceAll(Test1DReduce):
133 134
    def setUp(self):
        self.op_type = "reduce_sum"
135
        self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
136 137 138 139
        self.attrs = {'reduce_all': True}
        self.outputs = {'Out': self.inputs['X'].sum()}


W
whs 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
## reduction in multi dims
class TestReduceMeanOpMultiAxises(OpTest):
    def setUp(self):
        self.op_type = "reduce_mean"
        self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
        self.attrs = {'dim': [1, 2]}
        self.outputs = {'Out': self.inputs['X'].mean(axis=(1, 2))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceMaxOpMultiAxises(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_max"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
        self.check_output()


class TestReduceMinOpMultiAxises(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_min"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [1, 2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
        self.check_output()


class TestKeepDimReduceSumMultiAxises(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1], 'keep_dim': True}
        self.outputs = {
            'Out':
            self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


G
guosheng 已提交
202 203
if __name__ == '__main__':
    unittest.main()