legacy_allocator.cc 10.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/memory/allocation/legacy_allocator.h"
#include <string>
L
liuwei1031 已提交
17
#include <utility>
18
#include <vector>
Y
Yu Yang 已提交
19 20 21 22 23
#include "glog/logging.h"
#include "paddle/fluid/memory/detail/buddy_allocator.h"
#include "paddle/fluid/memory/detail/system_allocator.h"
#include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/string/printf.h"
24
#include "paddle/fluid/string/split.h"
Y
Yu Yang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

DEFINE_bool(init_allocated_mem, false,
            "It is a mistake that the values of the memory allocated by "
            "BuddyAllocator are always zeroed in some op's implementation. "
            "To find this error in time, we use init_allocated_mem to indicate "
            "that initializing the allocated memory with a small value "
            "during unit testing.");
DECLARE_double(fraction_of_gpu_memory_to_use);

namespace paddle {
namespace memory {
namespace legacy {
template <typename Place>
void *Alloc(const Place &place, size_t size);

template <typename Place>
L
liuwei1031 已提交
41
void Free(const Place &place, void *p, size_t size);
Y
Yu Yang 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55

template <typename Place>
size_t Used(const Place &place);

struct Usage : public boost::static_visitor<size_t> {
  size_t operator()(const platform::CPUPlace &cpu) const;
  size_t operator()(const platform::CUDAPlace &gpu) const;
  size_t operator()(const platform::CUDAPinnedPlace &cuda_pinned) const;
};

size_t memory_usage(const platform::Place &p);

using BuddyAllocator = detail::BuddyAllocator;

L
liuwei1031 已提交
56 57 58 59 60
std::unordered_map</*device id*/ int,
                   std::pair</*current memory usage*/ uint64_t,
                             /*peak memory usage*/ uint64_t>>
    gpu_mem_info;

Y
Yu Yang 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
BuddyAllocator *GetCPUBuddyAllocator() {
  // We tried thread_local for inference::RNN1 model, but that not works much
  // for multi-thread test.
  static std::once_flag init_flag;
  static detail::BuddyAllocator *a = nullptr;

  std::call_once(init_flag, []() {
    a = new detail::BuddyAllocator(
        std::unique_ptr<detail::SystemAllocator>(new detail::CPUAllocator),
        platform::CpuMinChunkSize(), platform::CpuMaxChunkSize());
  });

  return a;
}

// We compared the NaiveAllocator with BuddyAllocator in CPU memory allocation,
// seems they are almost the same overhead.
struct NaiveAllocator {
  void *Alloc(size_t size) { return malloc(size); }

  void Free(void *p) {
    PADDLE_ENFORCE(p);
    free(p);
  }

  static NaiveAllocator *Instance() {
    static NaiveAllocator x;
    return &x;
  }

 private:
  std::mutex lock_;
};

template <>
void *Alloc<platform::CPUPlace>(const platform::CPUPlace &place, size_t size) {
G
gongweibao 已提交
97
  VLOG(10) << "Allocate " << size << " bytes on " << platform::Place(place);
Y
Yu Yang 已提交
98 99 100 101
  void *p = GetCPUBuddyAllocator()->Alloc(size);
  if (FLAGS_init_allocated_mem) {
    memset(p, 0xEF, size);
  }
M
minqiyang 已提交
102
  VLOG(10) << "  pointer=" << p;
Y
Yu Yang 已提交
103 104 105 106
  return p;
}

template <>
L
liuwei1031 已提交
107 108
void Free<platform::CPUPlace>(const platform::CPUPlace &place, void *p,
                              size_t size) {
G
gongweibao 已提交
109
  VLOG(10) << "Free pointer=" << p << " on " << platform::Place(place);
Y
Yu Yang 已提交
110 111 112 113 114 115 116 117 118 119 120 121
  GetCPUBuddyAllocator()->Free(p);
}

template <>
size_t Used<platform::CPUPlace>(const platform::CPUPlace &place) {
  return GetCPUBuddyAllocator()->Used();
}

#ifdef PADDLE_WITH_CUDA
BuddyAllocator *GetGPUBuddyAllocator(int gpu_id) {
  static std::once_flag init_flag;
  static detail::BuddyAllocator **a_arr = nullptr;
122
  static std::vector<int> devices;
Y
Yu Yang 已提交
123 124

  std::call_once(init_flag, [gpu_id]() {
125 126
    devices = platform::GetSelectedDevices();
    int gpu_num = devices.size();
Y
Yu Yang 已提交
127 128

    a_arr = new BuddyAllocator *[gpu_num];
129 130
    for (size_t i = 0; i < devices.size(); ++i) {
      int dev_id = devices[i];
Y
Yu Yang 已提交
131
      a_arr[i] = nullptr;
132 133 134 135 136
      platform::SetDeviceId(dev_id);
      a_arr[i] = new BuddyAllocator(std::unique_ptr<detail::SystemAllocator>(
                                        new detail::GPUAllocator(dev_id)),
                                    platform::GpuMinChunkSize(),
                                    platform::GpuMaxChunkSize());
Y
Yu Yang 已提交
137

M
minqiyang 已提交
138 139 140 141 142 143
      VLOG(10) << "\n\nNOTE: each GPU device use "
               << FLAGS_fraction_of_gpu_memory_to_use * 100
               << "% of GPU memory.\n"
               << "You can set GFlags environment variable '"
               << "FLAGS_fraction_of_gpu_memory_to_use"
               << "' to change the fraction of GPU usage.\n\n";
Y
Yu Yang 已提交
144 145 146 147
    }
  });

  platform::SetDeviceId(gpu_id);
148 149 150
  auto pos = std::distance(devices.begin(),
                           std::find(devices.begin(), devices.end(), gpu_id));
  return a_arr[pos];
Y
Yu Yang 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
}
#endif

template <>
size_t Used<platform::CUDAPlace>(const platform::CUDAPlace &place) {
#ifdef PADDLE_WITH_CUDA
  return GetGPUBuddyAllocator(place.device)->Used();
#else
  PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}

template <>
void *Alloc<platform::CUDAPlace>(const platform::CUDAPlace &place,
                                 size_t size) {
#ifdef PADDLE_WITH_CUDA
  auto *buddy_allocator = GetGPUBuddyAllocator(place.device);
  auto *ptr = buddy_allocator->Alloc(size);
  if (ptr == nullptr) {
    int cur_dev = platform::GetCurrentDeviceId();
    platform::SetDeviceId(place.device);
    size_t avail, total;
    platform::GpuMemoryUsage(&avail, &total);
    LOG(WARNING) << "Cannot allocate " << string::HumanReadableSize(size)
                 << " in GPU " << place.device << ", available "
                 << string::HumanReadableSize(avail);
    LOG(WARNING) << "total " << total;
    LOG(WARNING) << "GpuMinChunkSize "
                 << string::HumanReadableSize(
                        buddy_allocator->GetMinChunkSize());
    LOG(WARNING) << "GpuMaxChunkSize "
                 << string::HumanReadableSize(
                        buddy_allocator->GetMaxChunkSize());
    LOG(WARNING) << "GPU memory used: "
                 << string::HumanReadableSize(Used<platform::CUDAPlace>(place));
    platform::SetDeviceId(cur_dev);
L
liuwei1031 已提交
187 188 189 190 191 192 193 194 195 196
  } else {
    gpu_mem_info[place.device].first += size;
    if (gpu_mem_info[place.device].first > gpu_mem_info[place.device].second) {
      gpu_mem_info[place.device].second = gpu_mem_info[place.device].first;
      VLOG(3) << "device: " << place.device << " peak memory usage : "
              << (gpu_mem_info[place.device].second >> 20) << " MiB";
    }
    if (FLAGS_init_allocated_mem) {
      cudaMemset(ptr, 0xEF, size);
    }
Y
Yu Yang 已提交
197 198 199 200 201 202 203 204
  }
  return ptr;
#else
  PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}

template <>
L
liuwei1031 已提交
205 206
void Free<platform::CUDAPlace>(const platform::CUDAPlace &place, void *p,
                               size_t size) {
Y
Yu Yang 已提交
207 208
#ifdef PADDLE_WITH_CUDA
  GetGPUBuddyAllocator(place.device)->Free(p);
L
liuwei1031 已提交
209
  gpu_mem_info[place.device].first -= size;
Y
Yu Yang 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
#else
  PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}

#ifdef PADDLE_WITH_CUDA
BuddyAllocator *GetCUDAPinnedBuddyAllocator() {
  static std::once_flag init_flag;
  static BuddyAllocator *ba = nullptr;

  std::call_once(init_flag, []() {
    ba = new BuddyAllocator(std::unique_ptr<detail::SystemAllocator>(
                                new detail::CUDAPinnedAllocator),
                            platform::CUDAPinnedMinChunkSize(),
                            platform::CUDAPinnedMaxChunkSize());
  });

  return ba;
}
#endif

template <>
size_t Used<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place) {
#ifdef PADDLE_WITH_CUDA
  return GetCUDAPinnedBuddyAllocator()->Used();
#else
  PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}

template <>
void *Alloc<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place,
                                       size_t size) {
#ifdef PADDLE_WITH_CUDA
  auto *buddy_allocator = GetCUDAPinnedBuddyAllocator();
  void *ptr = buddy_allocator->Alloc(size);

  if (ptr == nullptr) {
    LOG(WARNING) << "cudaMallocHost Cannot allocate " << size
                 << " bytes in CUDAPinnedPlace";
  }
  if (FLAGS_init_allocated_mem) {
    memset(ptr, 0xEF, size);
  }
  return ptr;
#else
  PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}

template <>
void Free<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place,
L
liuwei1031 已提交
262
                                     void *p, size_t size) {
Y
Yu Yang 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
#ifdef PADDLE_WITH_CUDA
  GetCUDAPinnedBuddyAllocator()->Free(p);
#else
  PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}

struct AllocVisitor : public boost::static_visitor<void *> {
  inline explicit AllocVisitor(size_t size) : size_(size) {}

  template <typename Place>
  inline void *operator()(const Place &place) const {
    return Alloc<Place>(place, size_);
  }

 private:
  size_t size_;
};

struct FreeVisitor : public boost::static_visitor<void> {
L
liuwei1031 已提交
283 284
  inline explicit FreeVisitor(void *ptr, size_t size)
      : ptr_(ptr), size_(size) {}
Y
Yu Yang 已提交
285 286 287

  template <typename Place>
  inline void operator()(const Place &place) const {
L
liuwei1031 已提交
288
    Free<Place>(place, ptr_, size_);
Y
Yu Yang 已提交
289 290 291 292
  }

 private:
  void *ptr_;
L
liuwei1031 已提交
293
  size_t size_;
Y
Yu Yang 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
};

size_t Usage::operator()(const platform::CPUPlace &cpu) const {
  return Used(cpu);
}

size_t Usage::operator()(const platform::CUDAPlace &gpu) const {
#ifdef PADDLE_WITH_CUDA
  return Used(gpu);
#else
  PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}

size_t Usage::operator()(const platform::CUDAPinnedPlace &cuda_pinned) const {
#ifdef PADDLE_WITH_CUDA
  return Used(cuda_pinned);
#else
  PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}
}  // namespace legacy

namespace allocation {

Allocation *LegacyAllocator::AllocateImpl(size_t size, Allocator::Attr attr) {
  void *ptr = boost::apply_visitor(legacy::AllocVisitor(size), place_);
  return new Allocation(ptr, size, place_);
}

void LegacyAllocator::Free(Allocation *allocation) {
L
liuwei1031 已提交
325 326 327
  boost::apply_visitor(
      legacy::FreeVisitor(allocation->ptr(), allocation->size()),
      allocation->place());
Y
Yu Yang 已提交
328 329 330 331 332
  delete allocation;
}
}  // namespace allocation
}  // namespace memory
}  // namespace paddle