parallel_executor.cc 11.8 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
C
chengduoZH 已提交
16
#include <string>
17
#include <tuple>
Q
qiaolongfei 已提交
18
#include <vector>
C
chengduo 已提交
19
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
20

X
clean  
Xin Pan 已提交
21
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
22

Y
Yu Yang 已提交
23
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
24
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
25
#endif
Y
Yang Yang 已提交
26

Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
yuyang18 已提交
29
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
32

Y
Yang Yang 已提交
33
namespace paddle {
Y
Yu Yang 已提交
34 35
namespace framework {

Y
Yu Yang 已提交
36 37 38
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
39
      : places_(places) {}
Y
Yu Yang 已提交
40

41 42 43 44 45 46 47 48 49 50 51
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
Y
Yu Yang 已提交
52 53
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
54
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
55
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
56

Y
Yu Yang 已提交
57
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
58
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
59
#endif
C
chengduoZH 已提交
60 61
  bool own_local_scope_;
  bool use_cuda_;
62
  bool use_all_reduce_;
Y
Yu Yang 已提交
63 64
};

65 66 67 68
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
69
ParallelExecutor::ParallelExecutor(
70
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
71
    const std::unordered_set<std::string> &params,
72 73
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
74
    Scope *scope, const std::vector<Scope *> &local_scopes,
75
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
76
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
77
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
78
  member_->global_scope_ = scope;
79
  member_->use_cuda_ = exec_strategy.use_cuda_;
80 81 82 83 84 85 86 87
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
  }
Y
Yu Yang 已提交
88

89
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
90
  // Create local scopes
91
  if (local_scopes.empty()) {
C
chengduoZH 已提交
92
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
93 94
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
95
      member_->local_scopes_.emplace_back(&scope->NewScope());
96 97
    }
  } else {
C
chengduoZH 已提交
98
    member_->own_local_scope_ = false;
99 100
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
101
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
102
    }
Y
Yu Yang 已提交
103 104
  }

C
chengduoZH 已提交
105
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
106 107
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
108 109 110 111 112 113 114 115 116
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
    ncclUniqueId *nccl_id = nullptr;
    if (nccl_id_var != nullptr) {
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
    }
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
        member_->places_, nccl_id, num_trainers, trainer_id));
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
117
#endif
C
chengduoZH 已提交
118 119 120
  }

  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
121
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
122
  }
123
// Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
124

125
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
X
Xin Pan 已提交
126
// ncclOp
Y
yuyang18 已提交
127
#ifdef PADDLE_WITH_CUDA
128
  std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
X
Xin Pan 已提交
129
      main_program, member_->places_, loss_var_name, params,
130
      member_->local_scopes_, member_->use_cuda_, member_->nccl_ctxs_.get());
S
sneaxiy 已提交
131 132 133 134 135 136 137 138 139 140 141 142

  auto max_memory_size = GetEagerDeletionThreshold();
  if (max_memory_size >= 0) {
    for (auto &place : member_->places_) {
      if (!platform::is_gpu_place(place)) continue;
      auto gpu_place = boost::get<platform::CUDAPlace>(place);
      if (gcs_[gpu_place.device] == nullptr) {
        ref_cnts_[gpu_place.device].reset(new details::ReferenceCountMap());
        cur_ref_cnts_[gpu_place.device].reset(
            new details::AtomicReferenceCountMap());
        gcs_[gpu_place.device].reset(
            new StreamGarbageCollector<Tensor>(gpu_place, max_memory_size));
S
sneaxiy 已提交
143 144
      }
    }
S
sneaxiy 已提交
145 146 147 148 149 150 151 152 153 154
    if (!gcs_.empty()) {
      auto ref_cnt_pass =
          ir::PassRegistry::Instance().Get("reference_count_pass");
      ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount, &ref_cnts_);
      ref_cnt_pass->SetNotOwned(details::kCurReferenceCount, &cur_ref_cnts_);
      ref_cnt_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
      graph = ref_cnt_pass->Apply(std::move(graph));
      graph->SetNotOwned("garbage_collector", &gcs_);
    }
  }
C
chengduoZH 已提交
155
#else
156 157 158
  std::unique_ptr<ir::Graph> graph =
      build_strategy.Apply(main_program, member_->places_, loss_var_name,
                           params, member_->local_scopes_, member_->use_cuda_);
Y
Yu Yang 已提交
159
#endif
X
Xin Pan 已提交
160

161 162 163 164 165 166 167 168 169 170 171
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
  std::vector<details::VariableInfo> var_infos;
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
    }
  }
W
Wu Yi 已提交
172 173 174 175 176 177
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
    PADDLE_ENFORCE_EQ(ir::GraphNum(*graph), 1,
                      "The number of graph should be only one");
  }

Y
yuyang18 已提交
178 179 180 181 182 183
  if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
    member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, places, std::move(graph)));
  } else {
    member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, places, std::move(graph)));
C
chengduoZH 已提交
184
  }
Y
yuyang18 已提交
185 186 187 188

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
      exec_strategy, member_->local_scopes_, std::move(var_infos),
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
189 190
}

Y
Yancey1989 已提交
191
void ParallelExecutor::BCastParamsToDevices(
192
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
193
  // the initializing bcast, all vars would be bcast from device(0).
194
  for (auto &var : vars) {
X
Xin Pan 已提交
195
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
196
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
197 198 199 200
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
201 202 203 204
    if (!main_tensor.IsInitialized()) {
      VLOG(3) << "one in var not inited, return!";
      continue;
    }
205 206
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
C
chengduoZH 已提交
207
#ifdef PADDLE_WITH_CUDA
208
      std::vector<void *> buffers;
209 210 211 212 213
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
214

X
Xin Pan 已提交
215
        if (i == 0) {
216 217
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
218
          auto local_scope = member_->local_scopes_[i];
219
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
220
          t->Resize(dims);
221
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
222
        }
223
        buffers.push_back(buffer);
224
      }
225

226 227 228 229 230 231
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
232 233
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
234
        }
235
        member_->nccl_ctxs_->WaitAll();
236
      }
C
chengduoZH 已提交
237 238 239
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
240 241
    } else {
      platform::CPUPlace cpu;
Y
Yancey1989 已提交
242
      for (size_t i = 0; i < member_->places_.size(); ++i) {
X
Xin Pan 已提交
243
        if (i == 0) continue;
Y
Yancey1989 已提交
244

245 246
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
247 248 249 250

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
251 252 253 254 255 256
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
257
      }
Y
Stash  
Yu Yang 已提交
258 259
    }
  }
Y
Yu Yang 已提交
260
}
Y
Yu Yang 已提交
261

Y
Yu Yang 已提交
262 263
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
264
  platform::RecordBlock b(0);
S
sneaxiy 已提交
265 266 267
#ifdef PADDLE_WITH_CUDA
  if (!gcs_.empty()) {
    ResetReferenceCount();
S
sneaxiy 已提交
268 269 270 271 272 273 274
    for (auto &pair : cur_ref_cnts_) {
      auto &name_map = *(pair.second);
      for (auto &fetch_name : fetch_tensors) {
        name_map.erase(fetch_name);
      }
      name_map.erase(fetched_var_name);
    }
S
sneaxiy 已提交
275 276
  }
#endif
S
sneaxiy 已提交
277 278 279
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
280
}
Y
Yu Yang 已提交
281

Y
Yu Yang 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
301 302 303 304 305
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
306 307
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
308
      auto t =
Y
Yu Yang 已提交
309
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
310 311
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
312 313 314 315
    }
  }
}

316
ParallelExecutor::~ParallelExecutor() {
317 318
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
319
  }
S
sneaxiy 已提交
320 321
  // member_ must be destructed before gcs_ since the destructor of
  // ReferenceCountOpHandle use raw pointers of gcs_ inside.
S
sneaxiy 已提交
322
  member_.reset();
323 324
}

Y
Yu Yang 已提交
325
}  // namespace framework
Y
Yang Yang 已提交
326
}  // namespace paddle
S
sneaxiy 已提交
327 328 329
#ifdef PADDLE_WITH_CUDA
USE_PASS(reference_count_pass);
#endif