bbox_head.py 12.9 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

G
Guanghua Yu 已提交
15 16
import numpy as np

Q
qingqing01 已提交
17 18 19
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
F
Feng Ni 已提交
20
from paddle.nn.initializer import Normal, XavierUniform, KaimingNormal
Q
qingqing01 已提交
21
from paddle.regularizer import L2Decay
22 23

from ppdet.core.workspace import register, create
Q
qingqing01 已提交
24 25
from ppdet.modeling import ops

26 27 28
from .roi_extractor import RoIAlign
from ..shape_spec import ShapeSpec
from ..bbox_utils import bbox2delta
F
Feng Ni 已提交
29 30 31
from ppdet.modeling.layers import ConvNormLayer

__all__ = ['TwoFCHead', 'XConvNormHead', 'BBoxHead']
32

Q
qingqing01 已提交
33 34 35

@register
class TwoFCHead(nn.Layer):
W
wangguanzhong 已提交
36 37 38 39 40 41 42 43 44 45
    """
    RCNN bbox head with Two fc layers to extract feature

    Args:
        in_channel (int): Input channel which can be derived by from_config
        out_channel (int): Output channel
        resolution (int): Resolution of input feature map, default 7
    """

    def __init__(self, in_channel=256, out_channel=1024, resolution=7):
Q
qingqing01 已提交
46
        super(TwoFCHead, self).__init__()
W
wangguanzhong 已提交
47 48 49
        self.in_channel = in_channel
        self.out_channel = out_channel
        fan = in_channel * resolution * resolution
50
        self.fc6 = nn.Linear(
W
wangguanzhong 已提交
51 52
            in_channel * resolution * resolution,
            out_channel,
53 54
            weight_attr=paddle.ParamAttr(
                initializer=XavierUniform(fan_out=fan)))
G
Guanghua Yu 已提交
55
        self.fc6.skip_quant = True
56 57

        self.fc7 = nn.Linear(
W
wangguanzhong 已提交
58 59
            out_channel,
            out_channel,
W
wangguanzhong 已提交
60
            weight_attr=paddle.ParamAttr(initializer=XavierUniform()))
G
Guanghua Yu 已提交
61
        self.fc7.skip_quant = True
62 63 64 65 66

    @classmethod
    def from_config(cls, cfg, input_shape):
        s = input_shape
        s = s[0] if isinstance(s, (list, tuple)) else s
W
wangguanzhong 已提交
67
        return {'in_channel': s.channels}
68 69 70

    @property
    def out_shape(self):
W
wangguanzhong 已提交
71
        return [ShapeSpec(channels=self.out_channel, )]
72 73

    def forward(self, rois_feat):
Q
qingqing01 已提交
74
        rois_feat = paddle.flatten(rois_feat, start_axis=1, stop_axis=-1)
75 76 77 78 79
        fc6 = self.fc6(rois_feat)
        fc6 = F.relu(fc6)
        fc7 = self.fc7(fc6)
        fc7 = F.relu(fc7)
        return fc7
Q
qingqing01 已提交
80 81


F
Feng Ni 已提交
82 83
@register
class XConvNormHead(nn.Layer):
W
wangguanzhong 已提交
84
    __shared__ = ['norm_type', 'freeze_norm']
F
Feng Ni 已提交
85 86
    """
    RCNN bbox head with serveral convolution layers
W
wangguanzhong 已提交
87

F
Feng Ni 已提交
88
    Args:
W
wangguanzhong 已提交
89 90 91 92 93 94 95 96 97
        in_channel (int): Input channels which can be derived by from_config
        num_convs (int): The number of conv layers
        conv_dim (int): The number of channels for the conv layers
        out_channel (int): Output channels
        resolution (int): Resolution of input feature map
        norm_type (string): Norm type, bn, gn, sync_bn are available, 
            default `gn`
        freeze_norm (bool): Whether to freeze the norm
        stage_name (string): Prefix name for conv layer,  '' by default
F
Feng Ni 已提交
98 99 100
    """

    def __init__(self,
W
wangguanzhong 已提交
101
                 in_channel=256,
F
Feng Ni 已提交
102 103
                 num_convs=4,
                 conv_dim=256,
W
wangguanzhong 已提交
104
                 out_channel=1024,
F
Feng Ni 已提交
105 106 107 108 109
                 resolution=7,
                 norm_type='gn',
                 freeze_norm=False,
                 stage_name=''):
        super(XConvNormHead, self).__init__()
W
wangguanzhong 已提交
110
        self.in_channel = in_channel
F
Feng Ni 已提交
111 112
        self.num_convs = num_convs
        self.conv_dim = conv_dim
W
wangguanzhong 已提交
113
        self.out_channel = out_channel
F
Feng Ni 已提交
114 115 116 117 118 119 120
        self.norm_type = norm_type
        self.freeze_norm = freeze_norm

        self.bbox_head_convs = []
        fan = conv_dim * 3 * 3
        initializer = KaimingNormal(fan_in=fan)
        for i in range(self.num_convs):
W
wangguanzhong 已提交
121
            in_c = in_channel if i == 0 else conv_dim
F
Feng Ni 已提交
122 123 124 125 126 127 128 129 130 131
            head_conv_name = stage_name + 'bbox_head_conv{}'.format(i)
            head_conv = self.add_sublayer(
                head_conv_name,
                ConvNormLayer(
                    ch_in=in_c,
                    ch_out=conv_dim,
                    filter_size=3,
                    stride=1,
                    norm_type=self.norm_type,
                    freeze_norm=self.freeze_norm,
132
                    initializer=initializer))
F
Feng Ni 已提交
133 134 135 136 137
            self.bbox_head_convs.append(head_conv)

        fan = conv_dim * resolution * resolution
        self.fc6 = nn.Linear(
            conv_dim * resolution * resolution,
W
wangguanzhong 已提交
138
            out_channel,
F
Feng Ni 已提交
139 140 141 142 143 144 145 146 147
            weight_attr=paddle.ParamAttr(
                initializer=XavierUniform(fan_out=fan)),
            bias_attr=paddle.ParamAttr(
                learning_rate=2., regularizer=L2Decay(0.)))

    @classmethod
    def from_config(cls, cfg, input_shape):
        s = input_shape
        s = s[0] if isinstance(s, (list, tuple)) else s
W
wangguanzhong 已提交
148
        return {'in_channel': s.channels}
F
Feng Ni 已提交
149 150 151

    @property
    def out_shape(self):
W
wangguanzhong 已提交
152
        return [ShapeSpec(channels=self.out_channel, )]
F
Feng Ni 已提交
153 154 155 156 157 158 159 160 161

    def forward(self, rois_feat):
        for i in range(self.num_convs):
            rois_feat = F.relu(self.bbox_head_convs[i](rois_feat))
        rois_feat = paddle.flatten(rois_feat, start_axis=1, stop_axis=-1)
        fc6 = F.relu(self.fc6(rois_feat))
        return fc6


Q
qingqing01 已提交
162 163
@register
class BBoxHead(nn.Layer):
164
    __shared__ = ['num_classes']
G
Guanghua Yu 已提交
165
    __inject__ = ['bbox_assigner', 'bbox_loss']
166
    """
W
wangguanzhong 已提交
167 168 169 170 171 172 173 174 175 176 177
    RCNN bbox head

    Args:
        head (nn.Layer): Extract feature in bbox head
        in_channel (int): Input channel after RoI extractor
        roi_extractor (object): The module of RoI Extractor
        bbox_assigner (object): The module of Box Assigner, label and sample the 
            box.
        with_pool (bool): Whether to use pooling for the RoI feature.
        num_classes (int): The number of classes
        bbox_weight (List[float]): The weight to get the decode box 
178
    """
Q
qingqing01 已提交
179 180

    def __init__(self,
181 182 183 184
                 head,
                 in_channel,
                 roi_extractor=RoIAlign().__dict__,
                 bbox_assigner='BboxAssigner',
Q
qingqing01 已提交
185
                 with_pool=False,
186
                 num_classes=80,
G
Guanghua Yu 已提交
187 188
                 bbox_weight=[10., 10., 5., 5.],
                 bbox_loss=None):
Q
qingqing01 已提交
189
        super(BBoxHead, self).__init__()
190 191 192 193 194 195
        self.head = head
        self.roi_extractor = roi_extractor
        if isinstance(roi_extractor, dict):
            self.roi_extractor = RoIAlign(**roi_extractor)
        self.bbox_assigner = bbox_assigner

Q
qingqing01 已提交
196
        self.with_pool = with_pool
197 198
        self.num_classes = num_classes
        self.bbox_weight = bbox_weight
G
Guanghua Yu 已提交
199
        self.bbox_loss = bbox_loss
200 201 202 203

        self.bbox_score = nn.Linear(
            in_channel,
            self.num_classes + 1,
W
wangguanzhong 已提交
204 205
            weight_attr=paddle.ParamAttr(initializer=Normal(
                mean=0.0, std=0.01)))
G
Guanghua Yu 已提交
206
        self.bbox_score.skip_quant = True
207 208 209 210

        self.bbox_delta = nn.Linear(
            in_channel,
            4 * self.num_classes,
W
wangguanzhong 已提交
211 212
            weight_attr=paddle.ParamAttr(initializer=Normal(
                mean=0.0, std=0.001)))
G
Guanghua Yu 已提交
213
        self.bbox_delta.skip_quant = True
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        self.assigned_label = None
        self.assigned_rois = None

    @classmethod
    def from_config(cls, cfg, input_shape):
        roi_pooler = cfg['roi_extractor']
        assert isinstance(roi_pooler, dict)
        kwargs = RoIAlign.from_config(cfg, input_shape)
        roi_pooler.update(kwargs)
        kwargs = {'input_shape': input_shape}
        head = create(cfg['head'], **kwargs)
        return {
            'roi_extractor': roi_pooler,
            'head': head,
            'in_channel': head.out_shape[0].channels
        }

    def forward(self, body_feats=None, rois=None, rois_num=None, inputs=None):
        """
W
wangguanzhong 已提交
233
        body_feats (list[Tensor]): Feature maps from backbone
234
        rois (list[Tensor]): RoIs generated from RPN module
W
wangguanzhong 已提交
235 236
        rois_num (Tensor): The number of RoIs in each image
        inputs (dict{Tensor}): The ground-truth of image
237 238
        """
        if self.training:
W
wangguanzhong 已提交
239
            rois, rois_num, targets = self.bbox_assigner(rois, rois_num, inputs)
240 241 242 243 244
            self.assigned_rois = (rois, rois_num)
            self.assigned_targets = targets

        rois_feat = self.roi_extractor(body_feats, rois, rois_num)
        bbox_feat = self.head(rois_feat)
G
Guanghua Yu 已提交
245
        if self.with_pool:
246 247
            feat = F.adaptive_avg_pool2d(bbox_feat, output_size=1)
            feat = paddle.squeeze(feat, axis=[2, 3])
Q
qingqing01 已提交
248
        else:
249 250 251 252 253
            feat = bbox_feat
        scores = self.bbox_score(feat)
        deltas = self.bbox_delta(feat)

        if self.training:
W
wangguanzhong 已提交
254 255
            loss = self.get_loss(scores, deltas, targets, rois,
                                 self.bbox_weight)
256
            return loss, bbox_feat
Q
qingqing01 已提交
257
        else:
258 259 260
            pred = self.get_prediction(scores, deltas)
            return pred, self.head

W
wangguanzhong 已提交
261
    def get_loss(self, scores, deltas, targets, rois, bbox_weight):
262 263 264 265 266 267 268 269 270 271 272 273 274 275
        """
        scores (Tensor): scores from bbox head outputs
        deltas (Tensor): deltas from bbox head outputs
        targets (list[List[Tensor]]): bbox targets containing tgt_labels, tgt_bboxes and tgt_gt_inds
        rois (List[Tensor]): RoIs generated in each batch
        """
        # TODO: better pass args
        tgt_labels, tgt_bboxes, tgt_gt_inds = targets
        tgt_labels = paddle.concat(tgt_labels) if len(
            tgt_labels) > 1 else tgt_labels[0]
        tgt_labels = tgt_labels.cast('int64')
        tgt_labels.stop_gradient = True
        loss_bbox_cls = F.cross_entropy(
            input=scores, label=tgt_labels, reduction='mean')
Q
qingqing01 已提交
276
        # bbox reg
277 278 279 280 281 282 283

        cls_agnostic_bbox_reg = deltas.shape[1] == 4

        fg_inds = paddle.nonzero(
            paddle.logical_and(tgt_labels >= 0, tgt_labels <
                               self.num_classes)).flatten()

W
wangguanzhong 已提交
284 285 286 287
        cls_name = 'loss_bbox_cls'
        reg_name = 'loss_bbox_reg'
        loss_bbox = {}

W
wangguanzhong 已提交
288 289 290 291 292
        loss_weight = 1.
        if fg_inds.numel() == 0:
            fg_inds = paddle.zeros([1], dtype='int32')
            loss_weight = 0.

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        if cls_agnostic_bbox_reg:
            reg_delta = paddle.gather(deltas, fg_inds)
        else:
            fg_gt_classes = paddle.gather(tgt_labels, fg_inds)

            reg_row_inds = paddle.arange(fg_gt_classes.shape[0]).unsqueeze(1)
            reg_row_inds = paddle.tile(reg_row_inds, [1, 4]).reshape([-1, 1])

            reg_col_inds = 4 * fg_gt_classes.unsqueeze(1) + paddle.arange(4)

            reg_col_inds = reg_col_inds.reshape([-1, 1])
            reg_inds = paddle.concat([reg_row_inds, reg_col_inds], axis=1)

            reg_delta = paddle.gather(deltas, fg_inds)
            reg_delta = paddle.gather_nd(reg_delta, reg_inds).reshape([-1, 4])
        rois = paddle.concat(rois) if len(rois) > 1 else rois[0]
        tgt_bboxes = paddle.concat(tgt_bboxes) if len(
            tgt_bboxes) > 1 else tgt_bboxes[0]

W
wangguanzhong 已提交
312
        reg_target = bbox2delta(rois, tgt_bboxes, bbox_weight)
313 314 315
        reg_target = paddle.gather(reg_target, fg_inds)
        reg_target.stop_gradient = True

G
Guanghua Yu 已提交
316 317 318 319 320 321 322 323 324
        if self.bbox_loss is not None:
            reg_delta = self.bbox_transform(reg_delta)
            reg_target = self.bbox_transform(reg_target)
            loss_bbox_reg = self.bbox_loss(
                reg_delta, reg_target).sum() / tgt_labels.shape[0]
            loss_bbox_reg *= self.num_classes
        else:
            loss_bbox_reg = paddle.abs(reg_delta - reg_target).sum(
            ) / tgt_labels.shape[0]
325

W
wangguanzhong 已提交
326 327
        loss_bbox[cls_name] = loss_bbox_cls * loss_weight
        loss_bbox[reg_name] = loss_bbox_reg * loss_weight
328

Q
qingqing01 已提交
329 330
        return loss_bbox

G
Guanghua Yu 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    def bbox_transform(self, deltas, weights=[0.1, 0.1, 0.2, 0.2]):
        wx, wy, ww, wh = weights

        deltas = paddle.reshape(deltas, shape=(0, -1, 4))

        dx = paddle.slice(deltas, axes=[2], starts=[0], ends=[1]) * wx
        dy = paddle.slice(deltas, axes=[2], starts=[1], ends=[2]) * wy
        dw = paddle.slice(deltas, axes=[2], starts=[2], ends=[3]) * ww
        dh = paddle.slice(deltas, axes=[2], starts=[3], ends=[4]) * wh

        dw = paddle.clip(dw, -1.e10, np.log(1000. / 16))
        dh = paddle.clip(dh, -1.e10, np.log(1000. / 16))

        pred_ctr_x = dx
        pred_ctr_y = dy
        pred_w = paddle.exp(dw)
        pred_h = paddle.exp(dh)

        x1 = pred_ctr_x - 0.5 * pred_w
        y1 = pred_ctr_y - 0.5 * pred_h
        x2 = pred_ctr_x + 0.5 * pred_w
        y2 = pred_ctr_y + 0.5 * pred_h

        x1 = paddle.reshape(x1, shape=(-1, ))
        y1 = paddle.reshape(y1, shape=(-1, ))
        x2 = paddle.reshape(x2, shape=(-1, ))
        y2 = paddle.reshape(y2, shape=(-1, ))

        return paddle.concat([x1, y1, x2, y2])

361
    def get_prediction(self, score, delta):
Q
qingqing01 已提交
362
        bbox_prob = F.softmax(score)
363 364 365 366 367 368 369 370 371 372
        return delta, bbox_prob

    def get_head(self, ):
        return self.head

    def get_assigned_targets(self, ):
        return self.assigned_targets

    def get_assigned_rois(self, ):
        return self.assigned_rois