fcos.py 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

import paddle.fluid as fluid

from ppdet.experimental import mixed_precision_global_state
from ppdet.core.workspace import register

__all__ = ['FCOS']


@register
class FCOS(object):
    """
    FCOS architecture, see https://arxiv.org/abs/1904.01355

    Args:
        backbone (object): backbone instance
        fpn (object): feature pyramid network instance
        fcos_head (object): `FCOSHead` instance
    """

    __category__ = 'architecture'
    __inject__ = ['backbone', 'fpn', 'fcos_head']

    def __init__(self, backbone, fpn, fcos_head):
        super(FCOS, self).__init__()
        self.backbone = backbone
        self.fpn = fpn
        self.fcos_head = fcos_head

    def build(self, feed_vars, mode='train'):
        im = feed_vars['image']
        im_info = feed_vars['im_info']

        mixed_precision_enabled = mixed_precision_global_state() is not None
        # cast inputs to FP16
        if mixed_precision_enabled:
            im = fluid.layers.cast(im, 'float16')

        # backbone
        body_feats = self.backbone(im)

        # cast features back to FP32
        if mixed_precision_enabled:
            body_feats = OrderedDict((k, fluid.layers.cast(v, 'float32'))
                                     for k, v in body_feats.items())

        # FPN
        body_feats, spatial_scale = self.fpn.get_output(body_feats)

        # fcosnet head
        if mode == 'train':
            tag_labels = []
            tag_bboxes = []
            tag_centerness = []
            for i in range(len(self.fcos_head.fpn_stride)):
                # reg_target, labels, scores, centerness
                k_lbl = 'labels{}'.format(i)
                if k_lbl in feed_vars:
                    tag_labels.append(feed_vars[k_lbl])
                k_box = 'reg_target{}'.format(i)
                if k_box in feed_vars:
                    tag_bboxes.append(feed_vars[k_box])
                k_ctn = 'centerness{}'.format(i)
                if k_ctn in feed_vars:
                    tag_centerness.append(feed_vars[k_ctn])
            # tag_labels, tag_bboxes, tag_centerness
            loss = self.fcos_head.get_loss(body_feats, tag_labels, tag_bboxes,
                                           tag_centerness)
            total_loss = fluid.layers.sum(list(loss.values()))
            loss.update({'loss': total_loss})
            return loss
        else:
            pred = self.fcos_head.get_prediction(body_feats, im_info)
            return pred

    def _inputs_def(self, image_shape, fields):
        im_shape = [None] + image_shape
        # yapf: disable
        inputs_def = {
            'image':    {'shape': im_shape,  'dtype': 'float32', 'lod_level': 0},
            'im_shape': {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
            'im_info':  {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
            'im_id':    {'shape': [None, 1], 'dtype': 'int64',   'lod_level': 0},
            'gt_bbox':  {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 1},
            'gt_class': {'shape': [None, 1], 'dtype': 'int32',   'lod_level': 1},
            'gt_score': {'shape': [None, 1], 'dtype': 'float32', 'lod_level': 1},
            'is_crowd': {'shape': [None, 1], 'dtype': 'int32',   'lod_level': 1},
            'is_difficult': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1}
        }
        # yapf: disable
W
wangguanzhong 已提交
110
        if 'fcos_target' in fields:
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
            targets_def = {
                'labels0':      {'shape': [None, None, None, 1],  'dtype': 'int32',     'lod_level': 0},
                'reg_target0':  {'shape': [None, None, None, 4],  'dtype': 'float32',   'lod_level': 0},
                'centerness0':  {'shape': [None, None, None, 1],  'dtype': 'float32',   'lod_level': 0},
                'labels1':      {'shape': [None, None, None, 1],  'dtype': 'int32',     'lod_level': 0},
                'reg_target1':  {'shape': [None, None, None, 4],  'dtype': 'float32',   'lod_level': 0},
                'centerness1':  {'shape': [None, None, None, 1],  'dtype': 'float32',   'lod_level': 0},
                'labels2':      {'shape': [None, None, None, 1],  'dtype': 'int32',     'lod_level': 0},
                'reg_target2':  {'shape': [None, None, None, 4],  'dtype': 'float32',   'lod_level': 0},
                'centerness2':  {'shape': [None, None, None, 1],  'dtype': 'float32',   'lod_level': 0},
                'labels3':      {'shape': [None, None, None, 1],  'dtype': 'int32',     'lod_level': 0},
                'reg_target3':  {'shape': [None, None, None, 4],  'dtype': 'float32',   'lod_level': 0},
                'centerness3':  {'shape': [None, None, None, 1],  'dtype': 'float32',   'lod_level': 0},
                'labels4':      {'shape': [None, None, None, 1],  'dtype': 'int32',     'lod_level': 0},
                'reg_target4':  {'shape': [None, None, None, 4],  'dtype': 'float32',   'lod_level': 0},
                'centerness4':  {'shape': [None, None, None, 1],  'dtype': 'float32',   'lod_level': 0},
            }
            # yapf: enable

            # downsample = 128
            for k, stride in enumerate(self.fcos_head.fpn_stride):
                k_lbl = 'labels{}'.format(k)
                k_box = 'reg_target{}'.format(k)
                k_ctn = 'centerness{}'.format(k)
                grid_y = image_shape[-2] // stride if image_shape[-2] else None
                grid_x = image_shape[-1] // stride if image_shape[-1] else None
                if grid_x is not None:
                    num_pts = grid_x * grid_y
                    num_dim2 = 1
                else:
                    num_pts = None
                    num_dim2 = None
                targets_def[k_lbl]['shape'][1] = num_pts
                targets_def[k_box]['shape'][1] = num_pts
                targets_def[k_ctn]['shape'][1] = num_pts
                targets_def[k_lbl]['shape'][2] = num_dim2
                targets_def[k_box]['shape'][2] = num_dim2
                targets_def[k_ctn]['shape'][2] = num_dim2
            inputs_def.update(targets_def)
        return inputs_def

    def build_inputs(
            self,
            image_shape=[3, None, None],
W
wangguanzhong 已提交
155
            fields=['image', 'im_info', 'fcos_target'],  # for-train
156 157 158
            use_dataloader=True,
            iterable=False):
        inputs_def = self._inputs_def(image_shape, fields)
W
wangguanzhong 已提交
159
        if "fcos_target" in fields:
160 161 162
            for i in range(len(self.fcos_head.fpn_stride)):
                fields.extend(
                    ['labels%d' % i, 'reg_target%d' % i, 'centerness%d' % i])
W
wangguanzhong 已提交
163
            fields.remove('fcos_target')
164
        feed_vars = OrderedDict([(key, fluid.data(
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
            name=key,
            shape=inputs_def[key]['shape'],
            dtype=inputs_def[key]['dtype'],
            lod_level=inputs_def[key]['lod_level'])) for key in fields])
        loader = fluid.io.DataLoader.from_generator(
            feed_list=list(feed_vars.values()),
            capacity=16,
            use_double_buffer=True,
            iterable=iterable) if use_dataloader else None
        return feed_vars, loader

    def train(self, feed_vars):
        return self.build(feed_vars, 'train')

    def eval(self, feed_vars):
        return self.build(feed_vars, 'test')

K
Kaipeng Deng 已提交
182 183 184
    def test(self, feed_vars, exclude_nms=False):
        assert not exclude_nms, "exclude_nms for {} is not support currently".format(
            self.__class__.__name__)
185
        return self.build(feed_vars, 'test')