fpn.py 9.6 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import numpy as np
import paddle
F
Feng Ni 已提交
17
import paddle.nn as nn
Q
qingqing01 已提交
18 19 20 21 22
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import XavierUniform
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register, serializable
F
Feng Ni 已提交
23
from ppdet.modeling.layers import ConvNormLayer
24
from ..shape_spec import ShapeSpec
Q
qingqing01 已提交
25

26 27
__all__ = ['FPN']

Q
qingqing01 已提交
28 29 30

@register
@serializable
F
Feng Ni 已提交
31
class FPN(nn.Layer):
W
wangguanzhong 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    """
    Feature Pyramid Network, see https://arxiv.org/abs/1612.03144

    Args:
        in_channels (list[int]): input channels of each level which can be 
            derived from the output shape of backbone by from_config
        out_channel (list[int]): output channel of each level
        spatial_scales (list[float]): the spatial scales between input feature
            maps and original input image which can be derived from the output 
            shape of backbone by from_config
        has_extra_convs (bool): whether to add extra conv to the last level.
            default False
        extra_stage (int): the number of extra stages added to the last level.
            default 1
        use_c5 (bool): Whether to use c5 as the input of extra stage, 
            otherwise p5 is used. default True
        norm_type (string|None): The normalization type in FPN module. If 
            norm_type is None, norm will not be used after conv and if 
            norm_type is string, bn, gn, sync_bn are available. default None
        norm_decay (float): weight decay for normalization layer weights.
            default 0.
        freeze_norm (bool): whether to freeze normalization layer.  
            default False
        relu_before_extra_convs (bool): whether to add relu before extra convs.
            default False
        
    """

Q
qingqing01 已提交
60 61 62
    def __init__(self,
                 in_channels,
                 out_channel,
63
                 spatial_scales=[0.25, 0.125, 0.0625, 0.03125],
F
Feng Ni 已提交
64
                 has_extra_convs=False,
65
                 extra_stage=1,
F
Feng Ni 已提交
66
                 use_c5=True,
F
Feng Ni 已提交
67 68 69
                 norm_type=None,
                 norm_decay=0.,
                 freeze_norm=False,
F
Feng Ni 已提交
70
                 relu_before_extra_convs=True):
Q
qingqing01 已提交
71
        super(FPN, self).__init__()
72 73 74 75
        self.out_channel = out_channel
        for s in range(extra_stage):
            spatial_scales = spatial_scales + [spatial_scales[-1] / 2.]
        self.spatial_scales = spatial_scales
F
Feng Ni 已提交
76
        self.has_extra_convs = has_extra_convs
77
        self.extra_stage = extra_stage
F
Feng Ni 已提交
78 79
        self.use_c5 = use_c5
        self.relu_before_extra_convs = relu_before_extra_convs
F
Feng Ni 已提交
80 81 82
        self.norm_type = norm_type
        self.norm_decay = norm_decay
        self.freeze_norm = freeze_norm
F
Feng Ni 已提交
83

Q
qingqing01 已提交
84 85 86 87
        self.lateral_convs = []
        self.fpn_convs = []
        fan = out_channel * 3 * 3

F
Feng Ni 已提交
88 89 90 91 92
        # stage index 0,1,2,3 stands for res2,res3,res4,res5 on ResNet Backbone
        # 0 <= st_stage < ed_stage <= 3
        st_stage = 4 - len(in_channels)
        ed_stage = st_stage + len(in_channels) - 1
        for i in range(st_stage, ed_stage + 1):
Q
qingqing01 已提交
93 94 95 96
            if i == 3:
                lateral_name = 'fpn_inner_res5_sum'
            else:
                lateral_name = 'fpn_inner_res{}_sum_lateral'.format(i + 2)
F
Feng Ni 已提交
97
            in_c = in_channels[i - st_stage]
W
wangguanzhong 已提交
98
            if self.norm_type is not None:
F
Feng Ni 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
                lateral = self.add_sublayer(
                    lateral_name,
                    ConvNormLayer(
                        ch_in=in_c,
                        ch_out=out_channel,
                        filter_size=1,
                        stride=1,
                        norm_type=self.norm_type,
                        norm_decay=self.norm_decay,
                        norm_name=lateral_name + '_norm',
                        freeze_norm=self.freeze_norm,
                        initializer=XavierUniform(fan_out=in_c),
                        name=lateral_name))
            else:
                lateral = self.add_sublayer(
                    lateral_name,
                    nn.Conv2D(
                        in_channels=in_c,
                        out_channels=out_channel,
                        kernel_size=1,
                        weight_attr=ParamAttr(
                            initializer=XavierUniform(fan_out=in_c))))
Q
qingqing01 已提交
121 122 123
            self.lateral_convs.append(lateral)

            fpn_name = 'fpn_res{}_sum'.format(i + 2)
W
wangguanzhong 已提交
124
            if self.norm_type is not None:
F
Feng Ni 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
                fpn_conv = self.add_sublayer(
                    fpn_name,
                    ConvNormLayer(
                        ch_in=out_channel,
                        ch_out=out_channel,
                        filter_size=3,
                        stride=1,
                        norm_type=self.norm_type,
                        norm_decay=self.norm_decay,
                        norm_name=fpn_name + '_norm',
                        freeze_norm=self.freeze_norm,
                        initializer=XavierUniform(fan_out=fan),
                        name=fpn_name))
            else:
                fpn_conv = self.add_sublayer(
                    fpn_name,
                    nn.Conv2D(
                        in_channels=out_channel,
                        out_channels=out_channel,
                        kernel_size=3,
                        padding=1,
                        weight_attr=ParamAttr(
                            initializer=XavierUniform(fan_out=fan))))
Q
qingqing01 已提交
148 149
            self.fpn_convs.append(fpn_conv)

F
Feng Ni 已提交
150
        # add extra conv levels for RetinaNet(use_c5)/FCOS(use_p5)
151
        if self.has_extra_convs:
F
Feng Ni 已提交
152 153 154
            for i in range(self.extra_stage):
                lvl = ed_stage + 1 + i
                if i == 0 and self.use_c5:
155
                    in_c = in_channels[-1]
F
Feng Ni 已提交
156 157 158
                else:
                    in_c = out_channel
                extra_fpn_name = 'fpn_{}'.format(lvl + 2)
W
wangguanzhong 已提交
159
                if self.norm_type is not None:
F
Feng Ni 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
                    extra_fpn_conv = self.add_sublayer(
                        extra_fpn_name,
                        ConvNormLayer(
                            ch_in=in_c,
                            ch_out=out_channel,
                            filter_size=3,
                            stride=2,
                            norm_type=self.norm_type,
                            norm_decay=self.norm_decay,
                            norm_name=extra_fpn_name + '_norm',
                            freeze_norm=self.freeze_norm,
                            initializer=XavierUniform(fan_out=fan),
                            name=extra_fpn_name))
                else:
                    extra_fpn_conv = self.add_sublayer(
                        extra_fpn_name,
                        nn.Conv2D(
                            in_channels=in_c,
                            out_channels=out_channel,
                            kernel_size=3,
                            stride=2,
                            padding=1,
                            weight_attr=ParamAttr(
                                initializer=XavierUniform(fan_out=fan))))
F
Feng Ni 已提交
184 185
                self.fpn_convs.append(extra_fpn_conv)

186 187 188 189 190 191 192
    @classmethod
    def from_config(cls, cfg, input_shape):
        return {
            'in_channels': [i.channels for i in input_shape],
            'spatial_scales': [1.0 / i.stride for i in input_shape],
        }

Q
qingqing01 已提交
193 194
    def forward(self, body_feats):
        laterals = []
195 196
        num_levels = len(body_feats)
        for i in range(num_levels):
F
Feng Ni 已提交
197
            laterals.append(self.lateral_convs[i](body_feats[i]))
Q
qingqing01 已提交
198

199 200
        for i in range(1, num_levels):
            lvl = num_levels - i
Q
qingqing01 已提交
201
            upsample = F.interpolate(
202
                laterals[lvl],
Q
qingqing01 已提交
203 204
                scale_factor=2.,
                mode='nearest', )
205
            laterals[lvl - 1] += upsample
Q
qingqing01 已提交
206 207

        fpn_output = []
208 209
        for lvl in range(num_levels):
            fpn_output.append(self.fpn_convs[lvl](laterals[lvl]))
Q
qingqing01 已提交
210

211
        if self.extra_stage > 0:
F
Feng Ni 已提交
212 213
            # use max pool to get more levels on top of outputs (Faster R-CNN, Mask R-CNN)
            if not self.has_extra_convs:
214
                assert self.extra_stage == 1, 'extra_stage should be 1 if FPN has not extra convs'
F
Feng Ni 已提交
215 216 217 218 219 220 221
                fpn_output.append(F.max_pool2d(fpn_output[-1], 1, stride=2))
            # add extra conv levels for RetinaNet(use_c5)/FCOS(use_p5)
            else:
                if self.use_c5:
                    extra_source = body_feats[-1]
                else:
                    extra_source = fpn_output[-1]
222 223 224
                fpn_output.append(self.fpn_convs[num_levels](extra_source))

                for i in range(1, self.extra_stage):
F
Feng Ni 已提交
225
                    if self.relu_before_extra_convs:
226 227
                        fpn_output.append(self.fpn_convs[num_levels + i](F.relu(
                            fpn_output[-1])))
F
Feng Ni 已提交
228
                    else:
229 230 231 232 233 234 235 236 237 238 239
                        fpn_output.append(self.fpn_convs[num_levels + i](
                            fpn_output[-1]))
        return fpn_output

    @property
    def out_shape(self):
        return [
            ShapeSpec(
                channels=self.out_channel, stride=1. / s)
            for s in self.spatial_scales
        ]